基于血管内超声的动脉斑块识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP317.4

基金项目:


Recognition of arterial plaques based on IVUS images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    冠状动脉斑块在血管内超声图像上主要表现为内膜和内膜下组织不同程度地增厚,导致管腔横截面积缩小。识别动脉斑块的类型,可以为临床治疗提供指导意义。动脉斑块主要分为脂质斑块、纤维斑块和钙化斑块,其回声强度依次增强。利用图像像素点灰度在空间的分布规律提取动脉斑块图像纹理特征信息,选取灰度共生矩阵(GLCM)、局部二值模式(LBP)、邻域灰度(NGL)3种特征提取方式,并对提取到的特征通过支持向量机(SVM)和纠错输出码(ECOC)进行分类。结果表明,3种特征提取方式组合的分类准确性上获得较好的效果。

    Abstract:

    The atherosclerotic plaque in the intravascular ultrasound image is mainly thickened by the intima and endominal tissue, which leads to the narrowing of the transverse section of the lumen and the identification of the types of atherosclerotic plaques, which can provide guidance for clinical treatment. Atherosclerotic plaques were mainly composed of lipid plaques, fibrous plaques and calcified plaques, and their echo intensity increased in turn. The texture feature information of arterial plaque image is extracted from the distribution of image pixel gray level in space, and three kinds of feature extraction methods are selected, such as GLCM, LBP, NGL. The extracted features are classified by the support vector machine (SVM) and the error correcting output codes (ECOC). The results show that the classification accuracy of the three feature extraction methods is better.

    参考文献
    相似文献
    引证文献
引用本文

张玉放,汪友生.基于血管内超声的动脉斑块识别[J].电子测量技术,2019,42(6):77-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-03
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知