基于骨架模型的人体行为分析
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391;TN911.73

基金项目:


Human behavior analysis based on skeleton model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着深度学习运用到图像领域,姿态估计、行为分析等算法的性能得到显著提升,希望在利用较好模型基础上进一步分析,在尽可能短的时间内得到更直观的结果。2016年提出的沙漏堆网络对人体关节点进行多尺度、多阶段的训练,在MPII数据集上回归了16对关节点坐标,在单个11 G显存的GPU上的平均准确率为87.6%;连接关节点构建人体骨架模型,然后根据骨架模型的加权角和倾斜角等几何特征,进一步推断人体的动作和行为状态,最后对人体行为进行分类和判断,包括站立、直坐、躺下等常见7类动作,平均准确率为82%,优势在于有效降低计算量和处理时间。

    Abstract:

    With the application of deep learning in the field of image, the performance of algorithm such as pose estimation and behavior analysis has been significantly improved. We hope to further analyze based on better models and get more intuitive results in the shortest time. The Stacked Hourglass network proposed in 2016 carried out multi-scale and multi-stage training on human keypoints, and regressed 16 pairs of coordinates of keypoints on the MPII dataset with 87.6% average accuracy rate on single GPU of 11G video memory. These keypints were connected into a human body skeleton model. The motion and behavior of the human body are further inferred based on the geometric features of the skeleton model such as weighted angle and tilt angle. The result is classification on human behavior for seven common class actions including standing, sitting, lying and so on. The final average accuracy is 82% and the advantage is to effectively reduce the amount of calculation and processing time.

    参考文献
    相似文献
    引证文献
引用本文

朱凌飞,万旺根.基于骨架模型的人体行为分析[J].电子测量技术,2019,42(8):68-73

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-16
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知