基于改进Faster RCNN的光伏电池内部缺陷检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP3914;TN081

基金项目:

国家自然科学基金(51974151)资助项目


Photovoltaic cell internal defect detection based on improved Faster RCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏电池近红外图像中复杂异构背景使内部缺陷检测成为一项极具挑战性的问题,为此,提出了一种基于深度学习的目标检测框架残差通道注意力Faster RCNN(residualchannelattentionfaster RCNN, RCAFaster RCNN),该网络通过卷积层池化层提取图像特征,再送入新颖的残差通道注意力RCA模块进行复杂背景特征抑制和缺陷特征突出,进而区域推荐网络推荐出更加精确的包含缺陷的候选框,最后利用分类与定位网络实现高精度的缺陷分类和位置估计。实验结果表明,RCAFaster RCNN的缺陷检测精度提升到了8329%,证明了所提方法的有效性。

    Abstract:

    The complex heterogeneous background in the nearinfrared images of photovoltaic solar cells makes the detection of internal defects become a very challenging problem.Thus, an object detection framework based on deeplearning residual channel attention Faster RCNN (RCAFaster RCNN) is proposed, which employs convolution layer and pooling layer to extract the image features, and sends them to the novel residual channel attention (RCA) module for complex background feature suppression and defect feature highlighting, then the region proposal network recommends a more accurate proposal containing defects, finally the classification and position network is applied to achieve highprecision defect classification and position estimation.The experimental results show that the defect detection accuracy of RCAFaster RCNN has improved to 8329%, which proves the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

伊欣同,单亚峰.基于改进Faster RCNN的光伏电池内部缺陷检测[J].电子测量技术,2021,44(1):40-47

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-10-28
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知