LBP与低秩分解的网状织物纹理缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP39141;TN91173

基金项目:

陕西省科技厅项目(2018GY173)、西安市科技局项目(GXYD75)资助


Defect detection of mesh fabric with LBP and lowrank decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对网状织物纹理复杂,缺陷检测难度大的问题,提出一种基于局部二值模式(LBP)与低秩稀疏矩阵分解的网状织物纹理缺陷检测方法.首先,采用等价旋转不变的局部二值模式算法提取网状织物纹理特征,获得纹理特征矩阵;其次,根据纹理特征矩阵构建低秩稀疏分解模型;最后,通过最佳阈值分割算法对网状织物低秩稀疏分解产生的显著图进行分割.实验结果表明,与K奇异值分解(KSVD)算法相比,该方法的平均准确率达到8994%,平均召回率达到9388%,分类总正确率达到92%以上。

    Abstract:

    For the problem of complex texture and difficulty in defect detection of mesh fabric. An algorithm based on local binary pattern (LBP) and low rank sparse matrix decomposition for defect detection of mesh fabric is proposed. Firstly, the local binary pattern with equivalent invariant rotation is used to extract the features of the mesh fabric image, and the texture feature matrix is obtained. Then, an appropriate lowrank sparse decomposition model is constructed based on the texture feature matrix. Finally, the significant graph generated by sparse matrix was segmented by OTSU optimal threshold segmentation algorithm, so that the defects of mesh fabric could be detected. Compared with KSVD algorithm, the experimental results show that the average accuracy of the method in this paper is 8994%, the average recall rate is over 9388%, and the total accuracy of classification is over 92%.

    参考文献
    相似文献
    引证文献
引用本文

刘秀平,冯奇,袁皓,徐健,陆珍,王圣鹏,闫焕营. LBP与低秩分解的网状织物纹理缺陷检测方法[J].电子测量技术,2021,44(1):135-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-10-28
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知