基于AIMMSRCKF的机动目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN953

基金项目:


Maneuvering target tracking algorithm based on AIMMSRCKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决交互式多模型(interacting multiple model, IMM)算法在目标机动时模型切换速度迟缓的问题,给出了一种Markov概率转移矩阵在线修正的自适应IMM(adaptive IMM, AIMM)算法,利用IMM子模型中连续两个时刻之间的概率差来调整Markov概率转移矩阵,以提高子模型的切换速度和分配的合理性,同时提高了IMM算法的跟踪精度。其次,将平方根容积卡尔曼滤波(squareroot cubature Kalman filter, SRCKF)引入到 AIMM 算法中,以解决在迭代滤波过程中协方差矩阵出现的非正定的问题,改善了数值稳定性,提出一种适用于机动目标跟踪的AIMMSRCKF算法,仿真实验结果表明,该算法能提高匹配模型概率,缩短模型切换时间。

    Abstract:

    To solve the problem of model switching slowness in interactive multiple model (IMM) algorithm when the target is maneuvering, an adaptive IMM (AIMM) algorithm with Markov probability transfer matrix online correction is presented. The Markov probability transfer matrix is adjusted by the probability difference between two consecutive moments in the IMM submodel to improve the switching speed and the rationality of the assignment of the submodel, and the tracking accuracy is improved. Secondly, squareroot volumetric Kalman filter (SRCKF) is introduced into AIMM algorithm to solve the nonpositive definite problem of covariance matrix and improve the numerical stability during iterative filtering. AIMMSRCKF algorithm for maneuvering target tracking is proposed. The simulation results show that the algorithm can improve the probability of matching models and shorten the model switching time.

    参考文献
    相似文献
    引证文献
引用本文

盛涛,夏海宝,肖冰松.基于AIMMSRCKF的机动目标跟踪算法[J].电子测量技术,2021,44(1):159-164

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-10-28
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知