PCA和Elman网络在移动学习策略分类中的应用
DOI:
CSTR:
作者:
作者单位:

渤海大学大学外语教研部锦州121013

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

辽宁省教育厅科学研究一般项目(W2015015)、辽宁省社会科学基金(L14CYY022)、辽宁省社会科学基金重点项目(L15AYY001)资助


Application of PCA and Elman network in mobile learning strategy classification
Author:
Affiliation:

Teaching and Research Institute of Foreign Languages, Bohai University, Jinzhou 121013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的大学生英语移动学习策略分类方法准确率较低的情况,提出了一种主成分分析(PCA)和Elman神经网络相结合的分类模型。首先,用PCA对所获得的移动学习策略原始数据作数据降维处理,提取前5个主成分,建立新的特征样本矩阵,再对Elman神经网络进行训练和泛化能力测试。仿真结果表明:单一的BPNN分类准确率为70.0%,单一的Elman网络分类准确率为80.0%,PCAElman网络分类准确率为100.0%,PCAElman网络模型简化了单一Elman网络的结构,提高了网络的训练速率、分类准确率和泛化能力,验证了所提出的模型的有效性。

    Abstract:

    To overcome the problem of low accuracy of traditional methods in the area of college student mobile learning strategy classification, a new classification model based on principal component analysis (PCA) and Elman neural network is proposed. First, dimensionality reduction was done to the obtained original data of student mobile learning strategies using PCA and 5 principal components were extracted to create a new feature sample matrix. Then the Elman neural network was trained and its generalization performance was tested. The simulation results indicate that: the classification accuracy of the single BPNN is 70.0%, the one of the single Elman model is 80.0% and the one of the PCAElman model is 100.0%; the PCAElman model can simplify the structure of the single Elman network, improve the training speed, classification accuracy and generalization performance; the effectiveness of the recommended model is proved.

    参考文献
    相似文献
    引证文献
引用本文

胡帅,程迎新,顾艳. PCA和Elman网络在移动学习策略分类中的应用[J].电子测量技术,2016,39(5):182-186

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-07-01
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知