用于金属板图像分割的自适应阈值算法
DOI:
CSTR:
作者:
作者单位:

上海大学机电工程与自动化学院 上海 200070

作者简介:

通讯作者:

中图分类号:

TN209

基金项目:

上海市科委重大基础研究项目(14JC1402200)、上海市科委项目(15411953502)资助


Adaptive thresholding algorithm for image segmentation in metal plate
Author:
Affiliation:

School of Electromechanical Engineering and Automation,Shanghai University, Shanghai 200072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对生产线上金属板表面光照不均匀和白、灰细颗粒相间的特点,将一维、二维Wellner自适应阈值算法应用到这种场景,并结合高斯加权距离,将算法推广,提出了一种针对金属板表面图像分割的高斯加权自适应分割算法。该方法首先通过计算区域内像素间的高斯加权距离,形成一张加权距离图,然后利用Wellner的“中心周围比较思想”直接求算二值图像。最后对实际产线上采集的图片进行了实验,将二维otsu算法、均匀性度量算法、一维、二维Wellner自适应算法和最后改进的算法在分割效果进行比较。实验结果表明,相对于其他算法,最后应用的算法在分割效果上具有明显的优势。

    Abstract:

    For the problem of the characteristics of the grey and white granular background image condition on the surface of the plate metals, onedimensional and twodimensional Wellner adaptive threshold algorithm are the first time to be applied to the scene. Based on those two kinds of algorithm, this paper proposes a gaussian weighted adaptive threshold algorithm to solve the problem. Firstly, this algorithm calculates the gaussian weighted distance between pixels in a window to form a weighted distance diagram and then use the ideology of Wellner "centeraround comparison" to calculate binary image directly. Finally, experiments are carried out on images acquired on actual production line. The twodimensional otsu algorithm, uniformity measurement algorithm, onedimensional, twodimensional Wellner adaptive algorithm and the last improved algorithm are compared. Experimental results show that, compared with other algorithms, the algorithm in the end of this paper has obvious advantages in the image segmentation effect.

    参考文献
    相似文献
    引证文献
引用本文

薛志文,杨傲雷,费敏锐,沈春锋.用于金属板图像分割的自适应阈值算法[J].电子测量技术,2017,40(7):85-89

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-08-15
  • 出版日期:
文章二维码