巴克豪森信号希尔伯特黄变换分析及特征提取
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学自动化学院 南京 211106

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:


Hilbert Huang transform analysis and feature extraction of barkhausen signal
Author:
Affiliation:

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高巴克豪森信号的分析精度,首先分析了巴克豪森信号传统特征提取方法的不足,在希尔伯特黄变换理论分析的基础上提出了一种新的巴克豪森信号特征提取方法,该方法同时包含了时间和频率信息,理论上具有很高的分析精度。通过新特征与传统特征的对比实验发现新特征的用于分类的识别率远远高于传统特征值,而且需要的训练样本量比传统特征值的更小。本文还通过实验发现单个传统特征值用于分类识别的识别率很低,而将传统特征值融合到一起可以明显提高识别率。

    Abstract:

    In order to improve the analysis accuracy of Barkhausen signal, we first analyze the shortcomings of the traditional feature extraction method of Barkhausen signal. Based on the analysis of HilbertHuang transform theory, a new Barkhausen signal feature extraction method is proposed. The method includes both time and frequency information, theoretically has a very high analytical accuracy. By comparing the new feature with the traditional feature, it is found that the recognition rate of the new feature for classification is much higher than the traditional one, and the training sample size is smaller than the traditional one. In this paper, we also find that the recognition rate of a single traditional eigenvalue is very low, and the traditional eigenvalues can be combined to improve the recognition rate.

    参考文献
    相似文献
    引证文献
引用本文

杨孟交,刘文波.巴克豪森信号希尔伯特黄变换分析及特征提取[J].电子测量技术,2017,40(8):180-183

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-09-23
  • 出版日期:
文章二维码