基于聚类方法的自动驾驶场景下的三维目标检测
DOI:
CSTR:
作者:
作者单位:

1.中国科学院空天信息创新研究院 北京 100094;2.中国科学院电磁辐射与探测技术重点实验室 北京 100190; 3.中国科学院大学电子电气与通信工程学院 北京 100049

作者简介:

通讯作者:

中图分类号:

TN919.8

基金项目:


3D object detection in automatic driving scene clustering
Author:
Affiliation:

1.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 2.Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, School of Electronic, Electrical and Communication Engineering, Beijing 100049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    KITTI数据集是自动驾驶场景下融合多个传感器的大型数据集,它的数据采集平台包括两个灰度摄像头、两个彩色摄像头、一个velodyne 64线激光雷达、四个光学镜头和一个GPS导航系统。KITTI 3D Object Detection Evaluation可为各种3D目标检测算法验证准确性和有效性,是自动驾驶领域最重要的数据集。此文的重点是KITTI数据集的数据重构和数据清洗:首先对KITTI数据集中的每一帧激光雷达数据使用RANSAC算法进行地面去除,并用DBSCAN算法对地面上的目标进行聚类,然后根据标签文件对聚类后的目标使用最近邻搜索赋予每个目标类别标签以完成数据重构,基于此,再对数据进行重采样以均衡类别完成数据清洗。针对重构和清洗后的KITTI数据使用PointNet算法完成分类任务,准确率高达95.13%,最后完成了KITTI数据集上3D目标检测与评估的总体框架。结果表明重构和清洗后的新数据集质量高,分类算法鲁棒性强,3D目标检测过程清晰完整。

    Abstract:

    KITTI is a large data set fused with multiple sensors in automatic driving scene, its data acquisition platform includes two gray-scale cameras, two color cameras, a velodyne 64 line lidar, four optical lenses and a GPS navigation system. KITTI 3D Object Detection Evaluation can verify the accuracy and effectiveness of various 3D object detection algorithms. It is the most important data set in the field of autonomous driving. The focus of this article is the data reconstruction and data cleaning of the KITTI data set: first, use the RANSAC algorithm to remove the ground from each frame of lidar data in the KITTI data set, and use the DBSCAN algorithm to cluster the targets on the ground, and then according to the label The file uses the nearest neighbor search to assign tags to each target category to complete the data reconstruction. Based on this, the data is resampled to balance the categories to complete the data cleaning. For the reconstructed and cleaned KITTI data, the PointNet algorithm is used to complete the classification task, and the accuracy rate is as high as 95.13%. Finally, the overall framework of 3D target detection and evaluation on the KITTI data set is completed. The results show that the quality of the reconstructed and cleaned new data set is high, the classification algorithm is robust, and the 3D target detection process is clear and complete.

    参考文献
    相似文献
    引证文献
引用本文

毕雪婷,刘小军,邵文远.基于聚类方法的自动驾驶场景下的三维目标检测[J].电子测量技术,2021,44(6):103-102

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-18
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知