基于条件约束的区域生长法耳蜗MR图像分割
DOI:
CSTR:
作者:
作者单位:

上海理工大学 光电信息与计算机工程学院,上海200093

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

上海市自然科学基金(17ZR1443500)资助


Cochlear MR image segmentation based on conditional constraint region growing method
Author:
Affiliation:

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在传统区域生长算法中,由于生长判定规则具有局限性,所以在分割医学图片时很容易产生过分割现象。为了解决过分割问题,本文提出了一种基于距离约束、多种子点加权的区域生长法对颞骨MR图像中的耳蜗区域进行分割。首先在区域生长法中添加一个距离约束条件,用于解决原始算法中存在的过分割问题;接着本文又进一步引入动态多种子加权生长规则,降低了因种子点选取不适造成的误差。经过在多组数据上进行实验,本文提出改进算法的Dice系数和交并比的平均值分别达到90.13%和88.59%,面积重叠误差和相对面积差平均值仅有11.64%和9.89%,较好于其他算法。

    Abstract:

    In the traditional region growing algorithm, because of the limitation of the growing rule, it is easy to produce over segmentation phenomenon in medical image segmentation. In order to solve the problem of over segmentation, a region growing method based on distance constraint and multiple sub points weighting is proposed to segment the cochlear region in temporal bone MR images. Firstly, a distance constraint is added to the region growing method to solve the over segmentation problem in the original algorithm. Then, the dynamic multi seed weighted growing rule is introduced to reduce the error caused by the unsuitable selection of seed points. After experiments on several groups of data, the average values of Dice coefficient and intersection union ratio of the improved algorithm are 90.13% and 88.59% respectively, and the average values of area overlap error and relative area difference are only 11.64% and 9.89%, which are better than other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

张宇豪,徐磊,白一清.基于条件约束的区域生长法耳蜗MR图像分割[J].电子测量技术,2021,44(8):105-109

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-11
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知