基于卷积神经网络和NBV的快速三维重建方法
DOI:
CSTR:
作者:
作者单位:

天津职业大学,电子信息工程学院 天津 300410

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

天津市教育科学“十三五”规划课题(VESP3011);2018年全国高等院校计算机基础教育研究会教学改革重点项目(2018-AFCEC-035)


3D reconstruction method based on convolution neural network & NBV
Author:
Affiliation:

School of Electronic Information Engineering, Tianjin Vocational University, Tianjin, 300410

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了是使三维(3D)重建适用于多种目标形状,并提高处理速度,提出一种基于机器学习的3D重建方法,重点解决“下一个最优视点”(NBV)规划问题。首先,给出NBV的定义和计算,建立离散NBV搜索空间;然后,生成NBV,同时对该空间进行迭代式重建。此外,为了处理NBV的学习问题,提出一个基于3D卷积神经网络的分类方法,将可能的传感器位姿考虑为一个分类问题。实验结果表明,所提方法的重建精度优于VoxNet网络方法,能较好地满足约束条件;与高精度信息增益方法相比,所提方法也取得了较优和接近的重建覆盖率,对于不同形状,基本上4次扫描就可以达到较高的覆盖率,且重建速度快约90倍。

    Abstract:

    To make 3D reconstruction suitable for various target shapes and improve the processing speed, a 3D reconstruction method based on machine learning is proposed, which focuses on solving the "next best viewpoint" (NBV) planning problem. Firstly, the definition and calculation of NBV are given, and the discrete NBV search space is established. Then, NBV is generated, and the space is reconstructed iteratively. In addition, in order to deal with the learning problem of NBV, a classification method based on 3D convolution neural network is proposed, which considers the possible position and pose of sensor as a classification problem. The experimental results show that the reconstruction accuracy of the proposed method is better than that of the voxnet network method, which can meet the constraints better. Compared with the high-precision information gain method, the proposed method also achieves better and close reconstruction coverage. Basically, it can achieve high coverage in 4 scans for different shapes, and the reconstruction speed is about 90 times faster.

    参考文献
    相似文献
    引证文献
引用本文

李爱军.基于卷积神经网络和NBV的快速三维重建方法[J].电子测量技术,2021,44(8):70-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-11
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知