基于可见区域的拥挤行人检测
DOI:
CSTR:
作者:
作者单位:

上海工程技术大学 机械与汽车工程学院 上海 201620

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Crowded pedestrian detection based on non-occluded part
Author:
Affiliation:

School of Mechanical and Automotive Engineering, Shanghai University of Engineering Sciences, Shanghai 201620, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对公共场合、拥挤或者背景复杂的情况下,传统的行人检测与跟踪算法效果不佳以及出现误检的问题,本文提出了一种基于孪生网络的NMS算法,可提高拥挤人群下行人检测跟踪的准确率。该方法利用较少遮挡的可见部分,去除多余的检测框,为了获取可见部分,本文提出了一种双盒模型(DBM)来同时预测行人的全身部分和可见部分,确保整个检测网络中两者之间的对应关系,以便在行人检测任务上实现更好的性能。本文在CrowdHuman数据集上进行了实验验证,实验结果表明,在拥挤情况下对行人检测具有较好的鲁棒性和检测精度且优于其他模型5%左右。

    Abstract:

    Aiming at the problems of poor performance of traditional pedestrian detection and tracking algorithms and false detections in public places, crowded or complex background, this paper proposed an NMS algorithm based on the siamese network, which is to improve the detection and tracking of pedestrians in crowded accurately. This method uses less occluded visible parts to remove redundant detection boxes. In order to obtain the visible part, this paper proposed a double-box model (DBM) to predict the whole body part and the visible part of the pedestrian at the same time, which is to ensure the correspondence between the two boxes in the entire network, so as to achieve a better pedestrian detection task performance. This paper has carried out experimental verification on the CrowdHuman dataset, and the experimental results show that it has good robustness and detection accuracy for pedestrian detection in crowded and is better than other models by about 5%.

    参考文献
    相似文献
    引证文献
引用本文

朱肖磊,吴训成,肖子遥,肖永超.基于可见区域的拥挤行人检测[J].电子测量技术,2021,44(15):122-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-26
  • 出版日期:
文章二维码