基于多指标最优权值融合的锂电池SOH估计
DOI:
CSTR:
作者:
作者单位:

1. 三峡大学电气与新能源学院 宜昌 443002; 2. 智慧能源技术湖北省工程研究中心 宜昌 443002

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:

国家自然科学基金项目(52007102)、湖北省重点研发计划项目(2020BAB110)资助


Estimation for state of health of lithium-ion batteries based on multi index optimal weight fusion
Author:
Affiliation:

1. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China; 2. Hubei Provincial Engineering Research Center of Intelligent Energy Technology, Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决现有锂电池SOH在线估计方法精度不高的问题,本文提出利用改进粒子群算法(IPSO)优化支持向量回归(SVR)模型的方法。首先对所提取的健康指标进行关联分析,在利用启发式算法寻优SVR超参数的同时,对提取的多个健康指标融合的权值系数寻优,得到以最优数据序列训练的最优参数的SVR模型。采用美国国家航空航天局PCoE研究中心的B5、B6、B7三组电池数据集对所提方法进行试验分析,结果表明,经算法优化后三组电池平均绝对百分误差(MAPE)和均方根误差(RMSE)分别降低了62.3%、65.5%。最后通过与现有的预测模型进行对比,证明了所提方法具有更高的在线估计精度。

    Abstract:

    In order to solve the problem of low accuracy of existing on-line SOH estimation methods for lithium batteries, In this paper, we propose an improved particle swarm optimization (IPSO) method to optimize the support vector regression (SVR) model. Firstly, the association analysis of the extracted health indicators is carried out, and the heuristic algorithm is used to optimize the hyper parameters of SVR. At the same time, the weights of the extracted multiple health indicators are optimized, and the SVR model with the optimal parameters trained by the optimal data sequence is obtained. Using three battery data sets B5, B6, B7 of the PCoE Research Center of the National Aeronautics and Space Administration to test and analyze the proposed method, the results show that the average absolute percentage error (MAPE) and root mean square error (RMSE) of the three groups of batteries are reduced by 62.3% and 65.5% respectively after the algorithm is optimized. Finally, by comparing with the existing prediction models, it is proved that the proposed method has higher online estimation accuracy.

    参考文献
    相似文献
    引证文献
引用本文

魏业文,解园琳,李梅,周英杰.基于多指标最优权值融合的锂电池SOH估计[J].电子测量技术,2021,44(15):23-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-26
  • 出版日期:
文章二维码