基于图神经网络的任务驱动元学习方法
DOI:
CSTR:
作者:
作者单位:

青岛科技大学,自动化与电子工程学院,青岛,266061

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:


Task-driven meta-learning based on graph neural network
Author:
Affiliation:

College of Automation and Electronic Engineering, Qingdao University of Science & Technology, Qingdao 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决传统分类模型泛化能力差的问题,本文提出了一种新的元学习方法。本文方法首先引入动态特征提取模块使得分类模型能够挖掘外部的任务信息;其次,本文采用协同训练的方法解决由于任务驱动模块的引入而导致的计算量增大问题;最后,本文用图神经网络作为分类模块充分利用样本之间的相关信息,达到进一步提高分类准确率的目的。与传统的元学习分类模型相比,本文方法在MiniImageNet数据集上的准确率提高了6.81%,在CIFAR-FS数据集上的准确率提高了6.20%,实验结果表明,本文方法可以有效解决传统元学习方法泛化能力差的问题。

    Abstract:

    In order to solve the issue of poor generalization ability of traditional classification models, an innovative meta-learning method was proposed in this paper. Firstly, a dynamic task-driven module was employed, which enabled the classification model to mine external task information; Secondly, a collaborative training method was adopted to overcome the increased complexity of calculation caused by the introduction of task-driven module; Finally, in order to exploit the relevant information between the samples, the graph neural network was used to be the classification module to achieve the purpose of further improving the classification accuracy. Compared with baselines, the accuracy of this method has increased by 6.81% and 6.20% on the MiniImageNet and CIFAR-FS datasets respectively. The experimental results show that the method in this paper can effectively improve the generalization ability of the classification model.

    参考文献
    相似文献
    引证文献
引用本文

李明,赵文仓,秦文谦.基于图神经网络的任务驱动元学习方法[J].电子测量技术,2021,44(16):123-129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-22
  • 出版日期:
文章二维码