基于CNN和LSTM的人脸表情识别模型设计
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 自动化与电子工程学院,山东 青岛 266061

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家海洋局重大专项项目 (国海科字[2016]494号No.30)


Facial expression recognition model design based on CNN and LSTM
Author:
Affiliation:

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao; 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人脸表情能够正确的反应人的内心活动,但由于表情的复杂性和微妙性,准确的识别人脸表情仍然是一大难题。本文设计了一种基于卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆神经网络(Long Short-Term Memory, LSTM) 的方法让计算机能够识别人脸的表情,损失函数采用Focal loss。该框架包括三个方面:(1)采用两种不同的预处理技术处理光照变化,并保留图像的边缘信息;(2)预处理后的图像被输入到两个独立的CNN层用于提取特征;(3)将提取到的特征与LSTM层融合。我们使用FER2013、JAFFE和CK+三个数据集验证模型准确性,并选择FER2013数据集制作混合矩阵,结果为我们的模型在FER2013数据集上的准确率相比于目前先进模型提升了9.65%,在JAFFE和CK+数据集上也表现良好,结果表明我们提出的模型具有较强的泛化能力。

    Abstract:

    Facial expressions can correctly reflect people's inner activities, but due to the complexity and subtlety of facial expressions, accurate recognition of facial expressions is still a big problem. This paper designs a method based on convolutional neural network (CNN) and long short term memory (LSTM), so that the computer can recognize the expression of human face The loss function uses focal loss. The framework includes three aspects: (1) two different preprocessing techniques are used to deal with the illumination change and preserve the edge information of the image. (2) The preprocessed image is input into two independent CNN layers for feature extraction. (3) The extracted features are fused with LSTM layer. We use FER2013, JAFFE and CK + data sets to verify the accuracy of the model, and select FER2013 data set to make a mixed matrix. The results show that the accuracy of our model on fer2013 data set is improved by 9.65% compared with the current advanced model, and it also performs well on Jaffe and CK + data sets. The results show that our proposed model has strong generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

程换新,王 雪,程力,孙胜意.基于CNN和LSTM的人脸表情识别模型设计[J].电子测量技术,2021,44(17):160-164

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码