OFDM系统中CNN-GRU信号检测自编码器
DOI:
CSTR:
作者:
作者单位:

重庆理工大学 电气与电子工程系 重庆市 400054

作者简介:

通讯作者:

中图分类号:

TN911.72

基金项目:

重庆市教委基金(KJ120827)、重庆市教委科学技术项目(KJ1500934)、重庆市教委科学技术研究项目(KJ1709205)、重庆市研究生科研创新项目(CYS18311)、重庆市基础与前沿研究计划项目(cstc2015jcyjA40051)、重庆市巴南区科技计划项目(2019TJ07)资助


CNN-GRU signal detection autoencoder in OFDM system
Author:
Affiliation:

School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在双选衰落特性下信道时变和非平稳导致OFDM信号检测精度较差的问题,提出了一种基于CNN-GRU神经网络(Convolutional Neural Network-Gated Recurrent Unit Neural Networks,CGNN)信号检测方案。首先使用信道模型生成数据以充分挖掘信道先验知识;然后在离线训练中采用一维卷积神经网络对原始信号进行降维和特征提取,利用门控循环单元的记忆特性恢复受到衰落的信号;最后为减少衰落程度严重的子载波引起的干扰,在网络训练中添加注意力机制,给每个子载波赋予权重,从而进行差异化训练。仿真结果表明,本文所提检测方法的误码性能提升明显,在平坦衰落信道下,CGNN能获得0.3dB~1dB的误码性能增益,在频率选择衰落信道下,CGNN能获得2dB~5dB的误码性能增益,并且拥有很强的鲁棒性。

    Abstract:

    Aiming at the problem of poor detection accuracy of OFDM signals caused by channel time-varying and non-stationary under dual-selection fading characteristics, a signal detection scheme based on CNN-GRU (Convolutional Neural Network-Gated Recurrent Unit Neural Networks, CGNN) is proposed. First, use the channel model to generate data to fully mine the prior knowledge of the channel; then use the one-dimensional convolutional neural network in offline training to reduce the dimensionality and feature extraction of the original signal, and use the memory characteristics of the gated loop unit to restore the fading signal; finally In order to reduce the interference caused by the severely fading sub-carriers, an attention mechanism is added to the network training, and weights are assigned to each sub-carrier, so as to perform differentiated training. The simulation results show that the error performance of the detection method proposed in this paper is significantly improved. In a flat fading channel, CGNN can obtain an error performance gain of 0.3dB~1dB. In a frequency selective fading channel, CGNN can obtain an error performance gain of 2dB~5dB, and it has strong robustness.

    参考文献
    相似文献
    引证文献
引用本文

张祖鹏,曹阳,彭小峰,文豪,秦怀军. OFDM系统中CNN-GRU信号检测自编码器[J].电子测量技术,2021,44(17):71-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码