VGG网络与多特征融合的遮挡人脸检测
DOI:
CSTR:
作者:
作者单位:

上海理工大学光电信息与计算机工程学院 上海 200082

作者简介:

通讯作者:

中图分类号:

TP911.73

基金项目:


Occlusion face detection based on VGG network and multi-feature fusion
Author:
Affiliation:

School of optoelectronic information and computer engineering, Shanghai University of Technology, Shanghai 200082, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    实际生活中的人脸图像大部分带有遮挡,常常导致待检测人脸的关键信息丢失。针对人脸识别过程中由于遮挡所导致的人脸特征难以提取的问题,本文设计了一种基于VGGNet和多特征点融合的遮挡人脸检测算法。该方法以VGG-16框架为特征提取的骨干网络,在传统VGG网络的全连接层输入前增加遮挡处理单元OCC-Net(Occlusion-Net)。在该层中首先采用多特征融合的方法,增强网络对人脸特征的提取;然后利用尺度不变特征转换(SIFT)算法,扩大网络中小尺度特征图,得到更为丰富的互补信息,改善了传统VGG网络由于多次卷积、池化操作后所导致的小尺度特征损失严重的问题;最后改进回归框参数以降低损失函数对遮挡区域的敏感度,通过边框回归得到遮挡区域的位置信息,提升了有遮挡情况下的人脸检测精度。实验结果表明,相较于PCANet、Faster RCNN及未添加OCCNet的传统VGGNet等常用算法,本文算法在常用的FDDB以及RMFD等遮挡数据集上,均能更精确地定位被遮挡的人脸,证实了该算法的有效性和鲁棒性。

    Abstract:

    Most face images in real life are occluded, which often leads to the loss of key information of the face to be detected. Aiming at the problem of difficulty in extracting facial features due to occlusion in the process of face recognition, this paper designs a occluded face detection algorithm based on VGGNet and multi-feature point fusion. This method uses the VGG-16 framework as the backbone network for feature extraction, and adds the occlusion processing unit OCC-Net (Occlusion-Net) before the input of the fully connected layer of the traditional VGG network. In this layer, the method of multi-feature fusion is first adopted to enhance the network's extraction of facial features; then the scale-invariant feature transformation (SIFT) algorithm is used to expand the small-scale feature maps in the network to obtain richer complementary information and improve The traditional VGG network has a serious problem of small-scale feature loss caused by multiple convolution and pooling operations; finally, the regression box parameters are improved to reduce the sensitivity of the loss function to the occluded area, and the position information of the occluded area is obtained through border regression. Improved the accuracy of face detection in the presence of occlusion. The experimental results show that compared with commonly used algorithms such as PCANet, Faster RCNN, and traditional VGGNet without OCCNet, the algorithm in this paper can more accurately locate the occluded face on the commonly used occlusion data sets such as FDDB and RMFD, which confirms The effectiveness and robustness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

何其霖,穆平安. VGG网络与多特征融合的遮挡人脸检测[J].电子测量技术,2021,44(18):150-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码