分布式光纤的沙漠埋地油气管道入侵信号识别
DOI:
CSTR:
作者:
作者单位:

1.西南石油大学 电气信息学院 成都 610500;2.西南石油大学 机电工程学院 成都 610500;3.国家山区公路工程技术研究中心 重庆 400067

作者简介:

通讯作者:

中图分类号:

TN253;TN911.7;TN391.4

基金项目:

国家自然基金面上项目(51974273)、 国家山区公路工程技术研究中心开放基金项目(GSGZJ-2020-01)、成都市国际科技合作项目(2020-GH02-00016-HZ)资助


Distributed fiber optics for intrusion signal identification of desert buried oil and gas pipelines
Author:
Affiliation:

1. College of Electric and Information, Southwest Petroleum University, Chengdu 610500, China; 2. College of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China; 3. National Engineering and Research Center for Mountainous Highways, Chongqing 400067, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对沙漠埋地油气管道服役环境、破坏情况和威胁管道安全的第三方入侵情况,容易引起入侵振动信号的有效特征提取和准确分类识别困难的问题,提出一种沙漠埋地油气管道入侵信号特征识别方法。该方法首先利用分布式光纤采集管道沿线入侵振动信号;然后通过改进的总体平均经验模态分解(MEEMD)法分解振动信号得到信号的固有模态函数(IMF)分量;进而提取IMF分量的能量以及MEEMD能量熵组成特征向量;最后将该特征向量输入到极限学习机(ELM)分类识别模型。实验结果表明,该方法能够实现敲击管道、人工挖掘、机械施工和沙暴天气四类事件识别,并与BP神经网络和支持向量机识别模型进行对比,该方法总识别准确率达到了94%,识别速度更快。本文所提方法对分布式光纤沙漠埋地油气管道监测具有重要参考意义。

    Abstract:

    Aiming at the problems in service environment, damage situation of oil and gas pipelines in desert burial ground and the invasion situation of third party which threatens the safety of pipelines, which easily causes the difficulties in effective feature extraction and accurate classification identification of invasion vibration signals, a feature identification method for invasion signals from oil and gas pipelines in desert burial ground is proposed. The method first uses distributed optical fiber to acquire the intrusion vibration signal along the pipeline, and then decomposes the vibration signal by the modified ensemble empirical mode decomposition (MEEMD) method to obtain the intrinsic mode function (IMF) component of the signal; then extracts the energy of the IMF component and the MEEMD energy entropy to form a feature vector; finally, the feature vector is input to the extreme learning machine (ELM) classification recognition model. The experimental results show that the method can achieve the recognition of four types by tapping the pipe, manual mining, mechanical construction and sandstorm weather, and compared with BP neural network and support vector machine recognition models, the total recognition accuracy of the method reaches 94%, and the recognition speed is faster. The proposed method has important reference significance for distributed fiber optic desert buried oil and gas pipeline monitoring.

    参考文献
    相似文献
    引证文献
引用本文

胡 泽,崔 源,葛 亮,肖小汀,王志毓,杨国强.分布式光纤的沙漠埋地油气管道入侵信号识别[J].电子测量技术,2021,44(17):93-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码