基于改进YOLOv4算法的PCB缺陷检测
DOI:
CSTR:
作者:
作者单位:

五邑大学 智能制造学部 广东 江门 529020

作者简介:

通讯作者:

中图分类号:

TP391;TP18

基金项目:

2017年广东省科技发展专项资金(2017A010101019)、2019年广东省普通高校特色创新类项目(2019KTSCX181)资助


Defect detection of PCB based on improved YOLOv4 algorithm
Author:
Affiliation:

Faculty of Intelligent Manufacturing,Wuyi University,Jiangmen Guangdong 529020,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有PCB(印刷电路板)缺陷检测方法,多采用参考法进行检测,对图片配准要求高,不仅耗时且定位误差大。YOLOv4速度快,精度高,但应用在PCB检测上存在着漏检的情况,对小目标检测效果不佳,现提出了一种基于改进YOLOv4算法的PCB缺陷检测方法。首先,以CSPDarknet53为主干网络,采用单特征层结构,避免了数据不均衡带来的先验框分配问题。然后,将网络中的五次卷积改进为CSP结构的残差单元,进一步提高特征提取能力。最后,采取K-means++对先验框重新进行聚类,提高模型训练效果。实验部分采取北京大学发布的PCB数据集进行训练,结果表明,改进后的算法mAP(平均精度均值)达到98.71%,在精度上优于其它常见的目标检测算法。

    Abstract:

    Reference template is used in most methods of PCB defect detection,which is very time consuming and causes a big position error. YOLOv4 is fast but it misses the object easily in PCB detection and its accuracy is not high in detecting the small object. Therefore, the method of PCB defect detection based on improved YOLOv4 algorithm is proposed. Firstly, CSPDarknet53 is used as backbone and the structure of single feature layer is adopted, which avoids the prior boxes assignment problem caused by data imbalance. Then, five convolutions are improved using CSP to increase further the ability offeature extract.Finally, prior boxes are gotten by using K-means++ to improve the training effect. In the experiment, Peking University PCB public dataset is used for training. The result shows that mean average precision of our algorithm achieves 98.71% and it has a better performance compared with other several classical object detection algorithms.

    参考文献
    相似文献
    引证文献
引用本文

李澄非,蔡嘉伦,邱世汉,梁辉杰.基于改进YOLOv4算法的PCB缺陷检测[J].电子测量技术,2021,44(17):146-153

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码