基于Tw_Cycle Gan的绝缘子缺陷样本自动生成技术
DOI:
CSTR:
作者:
作者单位:

1.上海电力大学电子与信息工程学院,上海201303; 2.国网四川省电力公司电力科学研究院,成都市610000; 3.国网四川省电力公司凉山供电公司,四川省西昌市 615000

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(61802250)资助


Automatic generation technology of insulator defect samples based on Tw_Cycle Gan
Author:
Affiliation:

1. College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201303; 2. State Grid Sichuan Electric Power Company Electric Power Research Institute,Chengdu,610000,China; 3. State Grid Sichuan Electric Power Company Liangshan Power Supply Company, Xichang Sichuan Province 615000, china

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Gan(生成对抗网络)被应用于电力巡检缺陷样本生成工作以解决缺陷样本不足问题。目前基于Gan的绝缘子缺陷样本生成技术存在以下不足:1)依赖大量缺陷样本训练且生成量不足;2)生成质量较差,尺寸较小,难以供目标检测神经网络训练使用。针对上述问题,提出一种基于Starganv2的风格迁移Tw_Cycle(目标加权循环一致)Gan网络,其可借助非缺陷样本训练,并依据非缺陷样本实现一对多缺陷样本生成。为保证缺陷语义不变,加入Unet分割网络,使用目标循环一致及目标掩码损失加强绝缘子目标物的约束。通过定性与定量评估,Tw_Cycle Gan取得了更好的结果。为了验证生成样本的有效性,设计了一种基于真实样本的缺陷检测实验评估方法。结果表明,使用生成缺陷样本扩增训练的同一Yolov3目标检测算法,AP平均提升5%左右,Precision平均提升4.6%左右,Recall平均提升10%左右,F1平均提升0.083。

    Abstract:

    Gan (Generative Adversarial Network) is applied to the generation of defect samples for power inspection to solve the problem of insufficient defect samples. The current Gan-based technology of insulator defect sample generation has the following limitations: 1) A large number of defect samples are required for training and the number of generations is insufficient; 2) The quality of the generated samples is poor, the size is small, making it difficult to use for target detection neural network model training. To address the above limitations, a style transfer Tw_Cycle (A Target weighted Cycle consistent) Gan is proposed based on Starganv2. The network can use non-defective samples for training, and realize one-to-many defect sample generation based on non-defective samples. In order to ensure the semantics of defects remain unchanged, the Unet segmentation network is added, and the Roi_cyc loss and the Roi_mask loss are used to strengthen the constraint of the insulator target. Through qualitative and quantitative evaluation, Tw_Cycle Gan has achieved better results. In order to verify the validity of the generated samples, an experimental evaluation method for defect detection based on real samples is designed. The results show that the same Yolov3 target detection algorithm that uses synthetic defect samples to amplify training, the AP, increased by about 5% on average, Precision increased by about 4.6% on average, Recall increased by about 10% on average, and F1 increased on average by 0.083.

    参考文献
    相似文献
    引证文献
引用本文

闫志杰,张凌浩,贾振堂,苏育均,赵 琰.基于Tw_Cycle Gan的绝缘子缺陷样本自动生成技术[J].电子测量技术,2021,44(17):138-145

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码