改进关系网络的小样本带钢表面缺陷分类方法
DOI:
CSTR:
作者:
作者单位:

兰州理工大学机电工程学院,甘肃 兰州 730000

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

甘肃省重点研发计划项目(18YF1GA063)资助


The surface defects classification method of strip steel with small samples based on improved relation network
Author:
Affiliation:

School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在带钢表面缺陷分类方法的研究中,提出了一种基于改进关系网络的小样本带钢表面缺陷分类方法。该方法借鉴网中网模型可以增强网络对局部感知野的特征辨识能力和非线性表达能力的特点,将该模型与关系网络模型相结合,并采用一种新的自正则化、非单调函数作为激活函数及修正后的平均绝对误差作为损失函数,可以允许更多的信息流入神经网络,使模型学习到更精细的特征表达能力,从而具有更好的准确性和泛化能力。将新模型在NEU-DET数据集上进行实验,结果表明:在5-way 1-shot任务中获得的缺陷分类准确率为79.95%,比原模型提高7.22%;在5-way 5-shot任务中获得的缺陷分类准确率为92.04%,比原模型提高2.15%。

    Abstract:

    To study the surface defects classification method of strip steel, a small sample classification method of strip steel surface defects based on improved relational network is proposed. In this method, firstly, the net-work-in-network model was used as reference to enhance the characteristics of the network's feature recognition ability and non-linear expression ability of the local receptive fields; secondly, the model was combined with the relational network model; thirdly, a new self-normalized non-monotonic function was used as the activation function and the modified average absolute error was used as the loss function to allow more information to flow into the neural network. In this way, the model is enabled to learn more refined feature expression capabilities, so as to have better accuracy and generalization ability. The new model is tested on the NEU-DET data set, and the test results show that the defect classification accuracy rate obtained in the 5-way 1-shot task is 79.95%, which is 7.22% higher than the original model; the defect classification accuracy rate obtained in the 5-way 5-shot task is 92.04%, which is 2.15% higher than the original model.

    参考文献
    相似文献
    引证文献
引用本文

薛文亮,靳伍银,王全.改进关系网络的小样本带钢表面缺陷分类方法[J].电子测量技术,2021,44(19):167-172

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-05
  • 出版日期:
文章二维码