融合注意力机制的实时行人检测算法
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 自动化与电子工程学院, 青岛 266061

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(No. 61971253)、青岛科技大学2021年大学生创新训练计划项目(S202110426006)资助


Real-time pedestrian detection algorithm fused with attention mechanism
Author:
Affiliation:

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高Tiny YOLOV3目标检测算法在行人检测任务中的准确率,对该算法进行了研究改进。首先对Tiny YOLOV3的特征提取网络进行深化,增强网络特征提取能力;然后在预测网络的两个检测尺度分别加入通道域注意力机制,对特征图的不同通道赋予不同的权重,引导网络更多关注行人的可视区域;最后,改进激活函数和损失函数并采用K-means聚类算法重新选择初始候选框。实验结果表明,改进后Tiny YOLOV3算法的准确率在VOC2007行人子集上达到77%,较Tiny YOLOV3提高8.5%,在INRIA数据集上达到92.7%,提高2.5%,运行速度分别达到每秒92.6帧和31.2帧。本文方法提高了行人的检测精度,保持了较快的检测速度,满足实时性运行需求。

    Abstract:

    In order to improve the accuracy of the Tiny YOLOV3 target detection algorithm in pedestrian detection tasks, the algorithm is researched and improved. Firstly, deepen the feature extraction network of Tiny YOLOV3 to enhance the feature extraction capabilities of the network. Then, add the channel attention mechanism to the two detection scales of the prediction network, and assign different weights to different channels of the feature map to guide the network to pay more attention the visible area of pedestrians. Finally, the activation function and loss function are improved, and the K-means clustering algorithm is used to reselect the initial candidate frame. Experimental results show that the improved Tiny YOLOV3 algorithm has an average precision(AP) of 77% on the VOC2007 pedestrian subset and 92.7% on the INRIA data set, which is 8.5% and 2.5% higher than Tiny YOLOV3, and the running speed is 92.6 frame per second(FPS) and 31.2 FPS. The improved algorithm improves the accuracy of pedestrian detection, maintains a faster detection speed, and meets real-time operation requirements.

    参考文献
    相似文献
    引证文献
引用本文

冯宇平,管玉宇,杨旭睿,刘宁,王兆辉.融合注意力机制的实时行人检测算法[J].电子测量技术,2021,44(17):123-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码