基于小波包能量谱和ICA的模拟电路故障特征提取方法
DOI:
CSTR:
作者:
作者单位:

淮北师范大学物理与电子信息学院,安徽淮北235000

作者简介:

通讯作者:

中图分类号:

TN707

基金项目:

2020年度安徽高校自然科学研究项目(KJ2020A0030)、2020年校级质量工程项目(2020xxqhz001)资助


Fault feature extraction of analog circuit based on wavelet packet energy spectrum and ICA
Author:
Affiliation:

School of Physics and Electronic Information Technology, Huaibei Normal University,Huaibei 235000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对模拟电路故障特征提取困难问题,提出一种基于小波包能量谱与独立成分分析相结合的模拟电路故障特征提取方法。首先通过仿真获取电路的故障输出信号,采用小波包分析对输出信号进行分解与重构,通过重构系数求取各频带的能量作为故障特征值。再利用独立成分分析算法对故障特征值进行优化,以此构造反映电路故障的特征向量。最后构造支持向量机,输入故障特征向量进行训练和测试,得出电路故障诊断准确率。仿真结果表明,该方法可以有效提取能够表征电路故障的特征参数,诊断准确率可达95.7%。

    Abstract:

    Aiming at the difficulty of analog circuit fault feature extraction, an analog circuit fault feature extraction method based on wavelet packet energy spectrum and independent component analysis is proposed. Firstly, the fault output signal of the circuit is obtained through simulation, the output signal is decomposed and reconstructed by wavelet packet analysis, and the energy of each frequency band is obtained as the fault eigenvalue through the reconstruction coefficient. Then the independent component analysis algorithm is used to optimize the fault eigenvalues, so as to construct the eigenvector reflecting the circuit fault. Finally, the support vector machine is constructed, the fault feature vector is input for training and testing, and the accuracy of circuit fault diagnosis is obtained. Simulation results show that this method can effectively extract the feature parameters that can feature circuit faults, and the diagnosis accuracy can reach 95.7%.

    参考文献
    相似文献
    引证文献
引用本文

单帅帅,马清峰,谢雯鑫.基于小波包能量谱和ICA的模拟电路故障特征提取方法[J].电子测量技术,2021,44(18):19-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码