基于LGB-FFM-LR算法的在线课程评分预测方法研究
DOI:
CSTR:
作者:
作者单位:

陕西科技大学电子信息与人工智能学院 西安 710021

作者简介:

通讯作者:

中图分类号:

TP391 TP18

基金项目:

国家自然科学基金项目(61871260)资助


Prediction methods of online course grading based on LGB-FFM-LR
Author:
Affiliation:

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi’an 710021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在线教育课程客观评价较差的问题,设计了基于决策树算法的梯度提升算法-场感知因式分解机-逻辑回归(Light Gradient Boosting Machine - Field-aware Factorization Machine - Logistic regression,LightGBM-FFM-LR)算法的评分预测模型。该模型采集在线课程观看历史数据,提取用户的通用特征、时间特征等特征值,并着重考虑特征值的高维特征和低维特征关系来实现多维特征组合,改善数据稀疏性,从而提升评分预测性能。通过对某在线课程网站的脱敏数据实验表明,该模型的评分预测值与评分实际值的决定系数为0.87,平均均方误差为0.42,提升了模型的泛化能力,对在线课程的预测评分结果更加客观真实。

    Abstract:

    For the problem of poor objective evaluation of online education courses, a prediction model based on Light Gradient Boosting Machine - Field-aware Factorization Machine - Logistic regression is designed. The model collects online course viewing history data, extracts users' generic features, temporal features and other feature values, and focuses on the relationship between high-dimensional features and low-dimensional features of feature values to achieve multi-dimensional feature combinations and improve data sparsity, so as to improve rating prediction performance. Based on masked data test on an online course website, the determination coefficient between predicted grading and actual one in this model is 0.87, with 0.42 of average mean square error, improved model generalization capability, this model serves more objective and realistic predicted grading to online course.

    参考文献
    相似文献
    引证文献
引用本文

刘昱萌,刘 斌.基于LGB-FFM-LR算法的在线课程评分预测方法研究[J].电子测量技术,2021,44(16):1-6

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-22
  • 出版日期:
文章二维码