基于CEEMDAN-HD-云模型特征熵的油气管道工况识别
DOI:
CSTR:
作者:
作者单位:

1.东北石油大学物理与电子工程学院 大庆 163318;2.东北石油大学人工智能能源研究院 大庆 163318;3.黑龙江省网络化与智能控制重点实验室 大庆 163318

作者简介:

通讯作者:

中图分类号:

TE832

基金项目:

国家自然科学基金(61873058)、教育部重点实验室开放基金项目(MECOF2019B02)资助


Identification of Oil and Gas Pipeline Working Condition Based on CEEMDAN -HD- Cloud Model Feature Entropy
Author:
Affiliation:

1.Northeast Petroleum University Physics and Electronic Engineering,Daqing 163318,China; 2.Northeast Petroleum University Artificial Intelligence Energy Research Institute,Daqing 163318,China; 3.Key Laboratory of Networking and Intelligent Control of Heilongjiang Province,Daqing 163318,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对长输油气管道泄漏检测过程中泄漏信号特征信息提取困难,提出一种新的管道负压波信号特征提取方法。采用添加自适应噪声的完备集合经验模态分解算法对采集的负压波信号进行去噪,通过评估CEEMDAN分解后分量与原始信号的概率密度之间的豪斯多夫距离选取有效模态并重构。计算重构信号的云模型特征熵、峭度作为特征参数,用支持向量机进行分类识别。通过实验室数据验证,CEEMDAN、豪斯多夫距离与云模型特征熵结合的方法可以有效提高油气管道泄漏检测的准确性,实现了对流量小于m/h的微小泄漏信号的识别,具有一定的现场应用价值。

    Abstract:

    Aiming at the difficulty in extracting the feature information of the leakage signal in the process of long-distance oil and gas pipeline leakage detection, a new pipeline negative pressure wave signal feature extraction method is proposed. A complete set of empirical mode decomposition algorithm with adaptive noise is used to denoise the collected negative pressure wave signal, and the Hausdorff distance between the probability density of the component after CEEMDAN decomposition and the original signal is evaluated. Select the effective mode and reconstruct. The cloud model feature entropy and kurtosis of the reconstructed signal are calculated as feature parameters, and the support vector machine is used for classification and recognition. Through laboratory data verification, the method of combining CEEMDAN, Hausdorff distance and cloud model feature entropy can effectively improve the accuracy of oil and gas pipeline leak detection, and realize the identification of small leak signals with a flow rate of less than 4^3m/h. Certain field application value.

    参考文献
    相似文献
    引证文献
引用本文

张勇,杨文武,王明吉,孙桐,刘洁,周兴达.基于CEEMDAN-HD-云模型特征熵的油气管道工况识别[J].电子测量技术,2021,44(21):89-94

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-08
  • 出版日期:
文章二维码