基于改进YOLOv3-Tiny的毫米波图像目标检测
DOI:
CSTR:
作者:
作者单位:

重庆邮电大学 光电工程学院 重庆 400065

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(61671091)项目资助


Millimeter Wave Image Object Detection Based on improved YOLOv3-Tiny
Author:
Affiliation:

Chongqing University of Posts and Telecommunications, School of Optoelectronic Engineering, Chongqing 400065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    毫米波是一种不具有电离辐射的电磁波,其能够穿透绝缘衣物布料和对人体无害的特性使得毫米波在人体安检领域有着巨大的发展前景。将深度学习方法运用至毫米波图像目标检测领域,提出一种基于改进YOLOv3-Tiny的毫米波图像目标检测方法。首先,在特征提取网络中增加卷积层提升网络深度,并增加至3个不同尺度的预测层加强对毫米波图像目标的检测能力;然后,在FPN特征金字塔(feature pyramid network)中引入CBAM注意力机制(convolutional block attention module),使网络更关注毫米波图像中待测目标的特征,忽略背景噪声冗余的特征。结果表明:改进后的网络平均准确率可达93.4%,单帧检测速度为15ms,模型参数仅为38.7M,为毫米波安检系统高精度、小型化的研究提供了参考价值。

    Abstract:

    The millimeter-wave is an electromagnetic wave without ionizing radiation. It can penetrate the insulating cloth and is harmless to the human body. These characteristics make the millimeter wave have a wide range of application prospects in the field of public safety. Apply deep learning to the field of millimeter-wave image object detection, a millimeter-wave image object detection method based on improved YOLOv3-Tiny is proposed. Firstly, add convolutional layers to the feature extraction network to increase the depth of the network and increases to 3 different scale prediction layers to enhance the detection ability of millimeter-wave image object. Then, the Convolutional block attention module is introduced in the Feature pyramid network to make the network pay more attention to the features of targets and ignore the characteristics of redundant background noise. The results show that the improved network has mean average accuracy up to 93.4%, single frame detection speed is 15 ms, model parameters are only 38.7M, which provides a reference value for the research of high precision and miniaturization of millimeter wave security system.

    参考文献
    相似文献
    引证文献
引用本文

陈国平,彭之玲,黄超意,管 春.基于改进YOLOv3-Tiny的毫米波图像目标检测[J].电子测量技术,2021,44(21):163-167

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-08
  • 出版日期:
文章二维码