基于自编码神经网络的鬼成像优化方法
DOI:
CSTR:
作者:
作者单位:

中北大学信息与通信工程学院 太原 030051

作者简介:

通讯作者:

中图分类号:

O431.2

基金项目:

内燃机可靠性国家重点实验室开放基金资助(No. skler-202011)、山西省应用基础研究计划青年科技研究基金(201901D211233),山西省回国留学人员科研项目(2021-110)资助


Ghost imaging optimization method based on autoencoder neural networker
Author:
Affiliation:

School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对鬼成像重构效果差所导致目标信息难以有效凸显的问题,结合自编码神经网络降噪优势,提出了一种鬼成像优化方法。该方法以手写数字数据集为样本,在对探测数据进行二阶关联获得初始鬼像的基础上,构建了一个降噪网络模型。该网络模型采用Leaky relu线性激活函数来解决网络的过饱和和单元死亡的问题,并通过10000个测试样本集验证了所提网络模型的有效性。通过对不同采样率下优化前后鬼像的质量进行了对比分析,分析结果表明,优化后综合不同采样率下鬼像的峰值信噪比较CGI、DGI、CS分别平均提高87.02%/93.99%、81.97%/85.90%、27.22%/18.16%;对比度较CGI、DGI、CS分别平均提高479.03%/363.79%、380.42%/272.91%、38.76%/31.05%。

    Abstract:

    Aiming at the problem that the target information is difficult to effectively highlight due to the poor reconstruction effect of ghost imaging, combined with the advantages of autoencoder neural network in noise reduction, a ghost imaging optimization method is proposed. In this method, a handwritten digital data set is used as a sample, and a noise reduction network model is designed based on the second-order correlation of the detection data to obtain the initial ghost image. The network model uses the Leaky relu linear activation function to solve the problem of network oversaturation and cell death, and the effectiveness of the proposed network model is verified through 10,000 testing sample sets. By comparing the quality of ghost images before and after optimization at different sampling rates, the analysis results show that the peak signal-to-noise ratio of ghost images after optimization is increased by 87.02%/93.99%, 81.97%/85.90%, 27.22%/18.16%, respectively; at the same time, the contrast is increased by 479.03%/363.79%, 380.42%/272.91%, 38.76%/31.05%, respectively, compared with CGI, DGI, and CS respectively.

    参考文献
    相似文献
    引证文献
引用本文

张思卿,杨风暴,王肖霞.基于自编码神经网络的鬼成像优化方法[J].电子测量技术,2021,44(21):77-83

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-08
  • 出版日期:
文章二维码