基于动态PSO-MCKD-HHT的滚动轴承故障诊断方法研究与应用
DOI:
CSTR:
作者:
作者单位:

1.大连交通大学 自动化与电气工程学院 辽宁 大连 116021; 2. 大连交通大学 轨道交通装备设计与制造技术国家地方联合工程研究中心 辽宁大连116021

作者简介:

通讯作者:

中图分类号:

TH133.3 TP18

基金项目:


Research and Application of Rolling Bearing Fault Diagnosis Method Based on Dynamic PSO-MCKD-EMD
Author:
Affiliation:

1.College of Automation and Electrical Engineering, Dalian Jiaotong University, Dalian 116021, China 2.National and Local Joint Engineering Research Center for Rail Transit Equipment Design and Manufacturing Technology,Dalian Jiaotong University, Dalian 116021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承作为牵引电机的重要部件之一,其故障诊断的准确性对保证牵引电机的正常运转具有重要的意义。为提高轴承故障诊断的准确性及有效性,选用最大相关峭度解卷积(MCKD)结合希尔伯特-黄变换(HHT)的方法进行诊断。针对MCKD算法受移位数(M),滤波器阶数(L)和冲击信号周期(T)特别依赖于经验的选择,选用动态粒子群算法对其进行优化,以降低噪声信号干扰,突出由故障激发的脉冲信号。再利用HHT算法得到信号包络谱,可以更好的识别不同故障类型。将VS与MATLAB相结合,可实现诊断算法应用到高级开发语言环境下。利用CWRU轴承数据集对算法进行验证,验证结果表明,该方法能够有效增强故障特征,得到轴承内圈故障频率为162Hz,轴承内圈故障频率为108Hz,可准确识别轴承的故障类型。

    Abstract:

    Rolling bearing is one of the important parts of traction motor, and the accuracy of its fault diagnosis is of great significance to ensure the normal operation of traction motor.In order to improve the accuracy and effectiveness of bearing fault diagnosis, the method of maximum correlation kurtosis deconvolution (MCKD) combined with Hilbert-Huang transform (HHT) is used for diagnosisIn view of the selection of MCKD algorithm subject to shift number (M), filter order (L) and shock signal period (T), it is particularly dependent on the choice of experience. The dynamic particle swarm algorithm is selected to optimize it to reduce noise signal interference. Pulse signal triggered by fault.Then use the HHT algorithm to get the signal envelope spectrum, which can better identify different types of faults. Combining VS with MATLAB can realize the application of diagnostic algorithms to the high-level development language environment.The algorithm was verified using the CWRU bearing data set. The verification results show that the method can effectively enhance the fault characteristics. The fault frequency of the bearing inner ring is 162Hz and the bearing inner ring fault frequency is 108Hz, which can accurately identify the fault type of the bearing.

    参考文献
    相似文献
    引证文献
引用本文

李东炎,李常贤.基于动态PSO-MCKD-HHT的滚动轴承故障诊断方法研究与应用[J].电子测量技术,2021,44(21):12-18

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-08
  • 出版日期:
文章二维码