基于长短期记忆网络的电网数据自动摘要研究
DOI:
CSTR:
作者:
作者单位:

1.贵州电网有限责任公司电力科学研究院,贵阳,550002; 2.清华大学电机工程与应用电子技术系,北京,100062

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

基于多维分析的省级集中可视化专利地图研究及应用项目GZKJXM20180941)资助


AutomaticExtractingAbstractsofPowerGridDataBasedonLongshorttermmemorynetwork
Author:
Affiliation:

1.Power scienceresear chinstitute of guizhou powerg ridco.LTD,Guiyang,550002 ,China; 2.Tsinghua University,Beijing,100062,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    出于在混合大数据中准确且高效地提取电网相关价值性信息的目的,研究基于长短期记忆网络与人工蜂群优化算法的电网数据自动摘要算法。进行双向LSTM学习目标词语前后文信息的设计,增加注意力机制,对电力范畴词汇及术语进行提取,借助条件随机场模型执行对嵌入序列的训练任务,预测句子是否可划归至电力范畴,在改进人工封群优化算法的支持下,优化处理大数据电力摘要提取问题,从混合大数据中将价值最高的电力相关数据确定下来。基于实际电网数据对本文算法进行验证,结果显示该算法获得了较好的效果。

    Abstract:

    For the purpose of accurately and efficiently extracting grid related value information from mixed big data, an automatic power grid data summarization algorithm based on long and short term memory network and artificial colony optimization algorithm is studied. Design the contextual information of the bidirectional LSTM learning target words, increase the attention mechanism, and extract the electric power category words and terms. The conditional random field model performs training tasks on embedded sequences to predict whether sentences can be classified into the category of electricity. With the support of the improved artificial clustering optimization algorithm, the problem of extracting power abstracted from big data is optimized, and the most valuable power related data is determined from the mixed big data. The proposed algorithm is validated based on actual grid data, and the results show that the proposed algorithm achieves good results.

    参考文献
    相似文献
    引证文献
引用本文

杨涛,黄良,吴建蓉,申彧,李冶.基于长短期记忆网络的电网数据自动摘要研究[J].电子测量技术,2021,44(19):122-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-05
  • 出版日期:
文章二维码