基于HHT的人体脉搏特征识别及分类研究
DOI:
CSTR:
作者:
作者单位:

佛山科学技术学院 佛山 528200

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:


Research on human pulse feature recognition and classification based on HHT
Author:
Affiliation:

Foshan University, Foshan, 528200, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了快速获取人体脉搏信号完整特征信息,并快速准确识别脉搏特征信息与人体疾病关联表征。研究采用多周期脉搏时域特征和基于集合模态经验分解(Ensemble Empirical Mode Decomposition EEMD)的希伯尔特黄变换(Hilbert-Huang-Transform HHT)获取瞬时频率及幅值作为频域特征,把时域及频域特征进行融合作为卷积神经网络的输入进行人体脉搏特征的识别及分类。从MIT-BIH 标准数据库中获取到三种临床症状的脉搏信号进行了实验分析,最后经过实验得到脉搏特征识别及分类准确率为91.88%。采用基于EEMD的HHT作为时域特征的补充,时频特征混合能够使得PPG脉搏信号完整的表征,并在卷积神经网络上进行分类实验,得到较好的分类效果。研究方法愿为临床诊断智能化发展、提高临床诊断的准确率及效率提供良好的促进作用。

    Abstract:

    In order to quickly obtain the complete feature information of the human pulse signal, and quickly and accurately identify the correlation between the pulse feature information and the human disease.The study uses the time-domain characteristics of multi-period pulses and the Hilbert-Huang-Transform(HHT) based on Ensemble Empirical Mode Decomposition(EEMD) to obtain the instantaneous frequency and amplitude as the frequency-domain characteristics. The time domain and frequency domain features as input fused convolutional neural network to identify and classify the pulse characteristics of the human body.The pulse signals of three clinical symptoms were obtained from the MIT-BIH standard database for experimental analysis. Finally, through experiments, the accuracy of pulse feature recognition and classification is 91.88%. Using EEMD-based HHT as a supplement to time-domain features, time-frequency feature mixing can make the PPG pulse signal complete characterization, and perform classification experiments on the convolutional neural network to obtain better classification results. Methods willing clinical diagnosis of intelligent development, improve the accuracy and efficiency of clinical diagnosis to provide a good role in promoting.

    参考文献
    相似文献
    引证文献
引用本文

郭成龙,陈海初,王志锋.基于HHT的人体脉搏特征识别及分类研究[J].电子测量技术,2021,44(19):116-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-05
  • 出版日期:
文章二维码