基于LSTM的室内定位系统设计与实现
DOI:
CSTR:
作者:
作者单位:

1南京邮电大学 电子与光学工程学院、微电子学院,江苏 南京 210023. 2射频集成与微组装技术国家地方联合工程实验室, 江苏 南京 210023

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

江苏省研究生科研创新计划(KYCX20_0803)、江苏省大学生创新训练计划(SYB2021017)、南京邮电大学国自孵化项目(NY220013)资助


Design and implementation on indoor positioning system based on LSTM
Author:
Affiliation:

1. College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications Nanjing, 210023, China 2. Nation-Local Joint Project Engineering Lab of RF Integration & Micropackage, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于蓝牙低功耗技术(BLE)的室内定位系统使用多层感知机(MLP)等机器学习算法作为定位算法,导致定位结果精度不足的问题。提出一种基于长短时记忆网络(LSTM)的室内定位方法,利用定位过程中的时域信息以提高定位精度。首先通过采集接收信号强度指示(RSSI)构建指纹数据库,然后依靠RSSI和二维坐标的映射关系进行网络模型训练获得权重系数。最后,使用训练好的网络模型构建室内定位系统。测试结果表明,本系统使用的定位方法平均误差为1.41m,与MLP和RNN算法相比分别提高了49%和16%,定位精度明显提升,能满足室内定位的需求。

    Abstract:

    In view of the problems that indoor positioning systems based on Bluetooth low energy technology (BLE) use machine learning algorithms such as multi-layer perceptron (MLP) as positioning algorithm, which leads to the problem of poor positioning accuracy. An indoor positioning method based on long short-term memory network (LSTM) is proposed in this article, which uses the time domain information in the positioning process to improve the positioning accuracy. First of all, a fingerprint database is built by collecting received signal strength indication (RSSI), and then rely on the mapping relationship between RSSI and two-dimensional coordinates for network model training to obtain weight coefficients. Finally, use the trained neural network model to build an indoor positioning system. The test results show that the average positioning error of this system is 1.41m, improved by 49% and 16% respectively when it is compared with MLP and RNN algorithms, and the positioning accuracy is significantly improved, which can meet the needs of indoor positioning.

    参考文献
    相似文献
    引证文献
引用本文

陈 禹,渠吉庆,唐文静,张瑛,孙科学.基于LSTM的室内定位系统设计与实现[J].电子测量技术,2021,44(19):161-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-05
  • 出版日期:
文章二维码