基于改进粒子群算法与油中溶解气体的变压器故障诊断研究
DOI:
CSTR:
作者:
作者单位:

云南民族大学电气信息工程学院 云南省高校信息与通信安全灾备重点实验室 昆明 650000

作者简介:

通讯作者:

中图分类号:

MT41

基金项目:

国家自然科学基金项目(61540063)、云南省应用基础研究计划项目(2018FD055)资助


Research on transformer fault diagnosis based on improved particle swarm algorithm and dissolved gas in oil
Author:
Affiliation:

University Key Laboratory of Information and Communication on Security Backup and Recovery in Yunnan Province,School of Electrical Information Engineering, Yunnan Nationalities University,Kunming 650000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用电力变压器故障时产生的气体(DGA)来对变压器进行故障诊断已经成为国内外重要的诊断方法。本文选择采用卷积神经网络(CNN)作为变压器故障的诊断模型,对电力变压器进行故障诊断。但CNN的诊断性能很大程度取决于它的结构,存在着模型超参数难以人工选择的问题。针对该问题,为了提高模型的诊断准确率,设计了利用改进粒子群算法(IPSO)来对CNN的超参数进行自动寻优。通过对PSO算法中的惯性权重W以及学习因子C1、C2进行改进,提高粒子的寻优能力,从而构建出性能更好的诊断模型,达到提高诊断准确率的目的。实验结果表明,IPSO算法具有比PSO更好的全局寻优能力和局部寻优能力,且基于IPSO算法搭建的CNN比人工经验搭建的CNN具有更高的诊断准确率,准确率提高了5.84%。

    Abstract:

    Using the gas (DGA) generated when a power transformer fails to diagnose the transformer fault has become an important diagnostic method at home and abroad. This paper chooses to use Convolutional Neural Network (CNN) as the transformer fault diagnosis model to diagnose the power transformer. However, the diagnostic performance of CNN largely depends on its structure, and there is a problem that it is difficult to manually select model hyperparameters. Aiming at this problem, in order to improve the diagnostic accuracy of the model, an improved particle swarm optimization algorithm (IPSO) is designed to automatically optimize the hyperparameters of CNN. By improving the inertia weight W and the learning factors C1 and C2 in the PSO algorithm, the optimization ability of the particles is improved, thereby constructing a diagnostic model with better performance and achieving the purpose of improving the accuracy of the diagnosis. The experimental results show that the IPSO algorithm has better global and local optimization capabilities than PSO, and the CNN built based on the IPSO algorithm has a higher diagnostic accuracy than the CNN built by human experience, and the accuracy rate is increased by 5.84%.

    参考文献
    相似文献
    引证文献
引用本文

肖云波,范菁,张宜,乔钰彬.基于改进粒子群算法与油中溶解气体的变压器故障诊断研究[J].电子测量技术,2021,44(18):122-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码