人体动作识别的特征级融合LSTM-CNN方法研究
DOI:
CSTR:
作者:
作者单位:

北京信息科技大学自动化学院 高动态导航技术北京市重点实验室 北京 100192

作者简介:

通讯作者:

中图分类号:

TP212

基金项目:

国家自然科学基金(61971048,61771059)项目资助


Research on Feature-Level Fusion LSTM-CNN Method for Human Activity Recognition
Author:
Affiliation:

Beijing Key Laboratory of High Dynamic Navigation Technology,Beijing Information Science and Technology University Automation college,Beijing 100192,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,深度学习方法在人体动作识别有着良好的表现,其利用陀螺仪和加速度计等可穿戴传感器获得的时间序列数据,经过预处理和数据级融合之后进行训练分类。本文针对数据级融合方法对多传感器的识别有一定局限性的问题,提出了一种特征级融合的LSTM和CNN方法。该方法将独立的传感器数据依次接入到LSTM层和卷积组件层用于特征提取,之后汇聚起多传感器的特征再进行动作分类。该方法在三个公开数据集UCI-HAR、PAMAP2和OPPORTUNITY上分别取得的平均F1分数为96.06%、96.17%和94.44%。实验结果表明,本文所提出的方法在多传感器识别人体动作上有较好的精度。

    Abstract:

    In recent years, deep learning methods have performed well in human activity recognition. They use time series data obtained by wearable sensors such as gyroscopes and accelerometers to perform training and classification after preprocessing and data-level fusion. This paper proposes a feature-level fusion method of LSTM and CNN in order to solve the problem that the data-level fusion method has certain limitations in the recognition of multiple sensors. This method connects the independent sensor data to the LSTM layer and the convolutional component layer in turn for feature extraction, and then gathers the features of multiple sensors for action classification. The average F1 scores of this method on the three public data sets UCI-HAR, PAMAP2 and OPPORTUNITY is 96.06%, 96.17% and 94.44% respectively. Experimental results show that the method proposed in this paper has better accuracy in multi-sensor recognition of human movements.

    参考文献
    相似文献
    引证文献
引用本文

杨万鹏,李擎,雷明.人体动作识别的特征级融合LSTM-CNN方法研究[J].电子测量技术,2021,44(17):173-180

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码