基于改进LSSVM的短期电力负荷预测
DOI:
CSTR:
作者:
作者单位:

1. 上海电力大学 电子与信息工程学院,上海 200090;2. 上海电机学院,上海 201306

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家自然科学基金项目(61202369;61401269;61572311)、上海市科技创新行动计划地方院校能力建设项(17020500900)、上海市教育发展基金会和上海市教育委员会“曙光计划”(17SG51)资助


Short-term power load forecasting based on improved LSSVM
Author:
Affiliation:

1. College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 2. Shanghai Dianji University, Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电力负荷随机性、波动性以及非线性因素所导致预测精度不高等问题,提出了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)短期负荷预测模型。该方法首先借助VMD将原始负荷时间序列分解成不同频率的本征模态函数(IMF)和残差分量(Res),然后对各分量建立不同的LSSVM预测模型并利用SSA进行参数优化,最后将各分量预测值组合得到最终的预测结果。以比利时蒙斯大学和中国河南省某地区两组真实数据为例进行预测分析,将预测结果与LSSVM、VMD-LSSVM、SSA-LSSVM模型预测值对比,得出本文方法的两组数据MAPE值分别为1.5016%、4.765%,远低于其他模型。结果表明本文组合预测模型在预测精度上具有一定的优越性。

    Abstract:

    Aiming at the problem of low prediction accuracy caused by randomness, fluctuation and nonlinear factors of power load, a short-term load prediction model based on least squares support vector machine (LSSVM) optimized by variational mode decomposition (VMD) and Sparrow search algorithm (SSA) was proposed. In this method, the original load time series was decomposed into the intrinsic mode function (IMF) and residual component (Res) of different frequencies by VMD. Then, different LSSVM prediction models were established for each component and parameters were optimized by SSA. Finally, the final prediction results were obtained by combining the predicted values of each component. Taking two groups of real data from The University of Mons in Belgium and a certain area of Henan Province in China as examples, the prediction results were compared with the predicted values of LSSVM, VMD-LSSVM and SSA-LSSVM models, and the MAPE values of the two groups of data proposed in this paper were 1.5016% and 4.765% respectively, far lower than those of other models. The results show that the combined prediction model in this paper has some advantages in prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

杨 邓,杨俊杰,胡晨阳,崔 丹,陈照光.基于改进LSSVM的短期电力负荷预测[J].电子测量技术,2021,44(18):47-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-09
  • 出版日期:
文章二维码