基于电子舌与GAN-CDAE-ELM模型的咖啡产地快速溯源检测
DOI:
CSTR:
作者:
作者单位:

山东理工大学计算机科学与技术学院 淄博 255049

作者简介:

通讯作者:

中图分类号:

TH879;TP391.4

基金项目:

山东省自然科学基金(编号:ZR2019MF024)、教育部科技发展中心产学研创新基金(编号:2018A02010)资助


Rapid origin traceability detection of coffee based on electronic tongue and GAN-CDAE-ELM model
Author:
Affiliation:

School of Computer Science and Technology, Shandong University of Technology, Zibo 255049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现对咖啡产地的快速溯源检测,提出了一种基于电子舌与生成对抗网络(GAN)-卷积降噪自编码器(CDAE)-极限学习机(ELM)组合模型相结合的检测方法。针对电子舌检测原始数据样本数量不足而导致深度学习模型准确率低、泛化能力差等问题,采用生成对抗网络(GAN)扩充训练样本数据规模,提高系统的鲁棒性;针对电子舌输出信号复杂、维度大、噪声多的特点,采用卷积降噪自编码器(CDAE)在低维特征空间对电子舌信号进行特征提取,提高关键特征的表达能力;最后,采用极限学习机(ELM)对提取的特征信息进行分类鉴别,构建咖啡产地溯源检测分析模型。利用该模型对五种不同产区的咖啡进行分类鉴别,结果表明:与基于离散小波变换(DWT)结合支持向量机(SVM)与极限学习机(ELM)等传统机器学习模型以及VGG16网络等深度学习模型相比,GAN-CDAE-ELM对不同产地咖啡分辨效果更优,其测试集的准确率、精确率、召回率、F1-Score分别达到了99.00%、99.03%、99.00%、0.9901。该研究为基于智能感官系统的咖啡产地快速辨识与检测提供一种新思路。

    Abstract:

    In order to realize the rapid traceability detection of coffee origin, a detection method based on the combination of electronic tongue and generative adversarial networks (GAN) - convolutional denoising autoencoder (CDAE) – extreme learning machine (ELM) is proposed. Aiming at the problems of low accuracy and poor generalization ability of deep learning model caused by the insufficient number of original data samples of electronic tongue detection, generative adversarial networks (GAN) is used to expand the data scale of training samples and improve the robustness of the system; According to the characteristics of complex electronic tongue output signal, large dimension and many noise, convolutional denoising autoencoder (CDAE) is used to extract the features of electronic tongue signal in low dimensional feature space to improve the expression ability of key features; Finally, extreme learning machine (ELM) is used to classify and identify the extracted feature information, and a coffee origin traceability detection and analysis model is constructed. The results show that compared with the traditional machine learning models such as discrete wavelet transform (DWT), support vector machine (SVM) and extreme learning machine (ELM), as well as the deep learning models such as VGG16 network, GAN-CDAE-ELM has better discrimination effect on coffee from different producing areas, and its test set has higher accuracy, precision, the recall and F1 score reached 99.00%, 99.03%, 99.00% and 0.9901. This study provides a new idea for rapid identification and detection of coffee producing areas based on intelligent sensory system.

    参考文献
    相似文献
    引证文献
引用本文

高继勇,王首程,于雪莹,王志强.基于电子舌与GAN-CDAE-ELM模型的咖啡产地快速溯源检测[J].电子测量技术,2021,44(21):36-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-08
  • 出版日期:
文章二维码