基于多特征提取和KECA柴油机关键部件故障识别
DOI:
CSTR:
作者:
作者单位:

1.中北大学 机械工程学院 太原 030051; 西安昆仑工业(集团)有限责任公司 西安 710000

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

内燃机可靠性国家重点实验室基金项目(skler-201911)资助


Fault identification of key components of diesel engine based on multi feature extraction and KECA
Author:
Affiliation:

1. School of Mechanical Engineering, North University of China, Taiyuan, 030051, China; 2. Xi'An KunLun Industrial (Groups) Corporation, Xian, 710000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对柴油机系统故障特征信息微弱、识别率低的问题,提出一种基于多特征提取和核熵成分分析(KECA)的柴油机关键部件故障识别方法。首先对采集的信号经集合经验模态分解重构降噪后提取方差、峭度、方根幅值、峰值因子和排列熵作为特征参量,选择KECA对其高维降成低维特征,最后由支持向量机对新的低维特征进行故障识别,并对比用其他降维方法的分类结果。结果显示:此分类结果显著比其他方法好,识别准确率为96.67%,说明本文所提方法可对柴油机关键部件进行故障识别,且拥有良好的应用前景。

    Abstract:

    Aiming at the problems of weak fault feature information and low recognition rate of diesel engine system, a fault recognition method of key components of diesel engine based on multi feature extraction and kernel entropy component analysis (KECA) is proposed. Firstly, the collected signal is reconstructed and denoised by ensemble empirical mode decomposition, and then the variance, kurtosis, square root amplitude, peak factor and arrangement entropy are extracted as the characteristic parameters, which are reduced by KECA. Finally, support vector machine is used for fault identification and classification, and the classification results of other dimensionality reduction methods are compared. The results show that the classification results of this paper are obviously better than the other two, and the correct rate of fault identification is 96.67%, which shows that this method can effectively diagnose the fault of key components of diesel engine system, and has a good application prospect.

    参考文献
    相似文献
    引证文献
引用本文

许 昕,韩慧苗,潘宏侠,赵 璐.基于多特征提取和KECA柴油机关键部件故障识别[J].电子测量技术,2021,44(19):63-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-05
  • 出版日期:
文章二维码