基于高斯混合模型的平流层浮空器RCS分布拟合
DOI:
CSTR:
作者:
作者单位:

西北核技术研究所 西安 710024

作者简介:

通讯作者:

中图分类号:

P412.25

基金项目:


Gaussian mixture model-based RCS distribution fitting for stratosphere aerostats
Author:
Affiliation:

Northwest Institute of Nuclear Technology, Xi’an 710024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    雷达散射截面(RCS)是表征目标电磁散射特性的重要物理参数。本文针对典型起伏模型对平流层浮空器动态RCS分布特性描述精度较低的问题,采用高斯混合模型对浮空器动态RCS测量数据的起伏分布进行拟合并完成检验。首先,对浮空器体坐标系中的雷达视线角进行了解算;其次,采用多个高斯分布模型的混合叠加逼近浮空器RCS的概率密度分布,并引入期望最大化算法对各高斯分布分量的参数进行估计;最后,选取具有代表性的方位角度域内的浮空器RCS实测数据,分析了高斯混合模型对RCS概率分布的拟合效果并与典型起伏模型对比及检验拟合优度。数据分析结果表明,在最小二乘准则下高斯混合模型相比于典型起伏模型对RCS概率分布的拟合效果最高可提升96.87%,验证了高斯混合模型的有效性。

    Abstract:

    The radar cross section (RCS) is an important physical parameter to characterize the scattering characteristics of targets. This work aims at the problem that the typical fluctuation models have low precision in describing the RCS distribution characteristics of stratospheric aerostats, and the Gaussian mixture model is applied to fit the dynamic RCS distribution for aerostats. Firstly, the line-of-sight (LOS) angle for radar in aerostat’s body coordinates is formulated. Secondly, a superposition of several Gaussian models is used to characterize the probability density distribution of aerostat’s RCS, and the model parameters are approximated via the expectation maximization algorithm. Finally, the fitting effect of Gaussian mixture model on RCS distribution is studied and tested with some aerostat's RCS measurements and compared to typical fluctuation models. The results show that the Gaussian mixture model can improve the fitting effect of RCS probability distribution by up to 96.87% compared with other typical models under the least square criterion, thus demonstrating the effectiveness of Gaussian mixture model.

    参考文献
    相似文献
    引证文献
引用本文

李坤坤,曹 锐,杨耀东,徐润田.基于高斯混合模型的平流层浮空器RCS分布拟合[J].电子测量技术,2021,44(19):110-115

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-05
  • 出版日期:
文章二维码