改进YOLOv2算法的道路摩托车头盔检测
DOI:
CSTR:
作者:
作者单位:

重庆交通大学机电与车辆工程学院 重庆 400074

作者简介:

通讯作者:

中图分类号:

TP391.41;TP332

基金项目:

重庆市科技局2020重庆市技术创新与应用发展专项面上项目(cstc2020jscx-msxmX0161)资助


Improved YOLOv2 algorithm for road motorcycle helmet detection
Author:
Affiliation:

School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对摩托车头盔的传统检测方法准确率低、泛化能力差和目标检测网络参数量大难以在嵌入式设备运行的问题,提出改进的YOLOv2的MNXt-ECA-D-YOLOv2目标检测算法模型。首先引入MobileNeXt网络替换YOLOv2原始骨干网络,其次在MobileNeXt的沙漏块中引入密集连接结构同时在网络中引入有效通道注意力机制,然后在不同深度网络层应用不同的激活函数,最后在网络输出卷积层之前增加DropBlock模块。采用K-means聚类算法重新设计了自制数据集的先验框尺寸。实验结果表明,改进后的模型相比原始YOLOv2,在AP50指标上提高了3.53%,模型大小减少77.44%,检测速度提高了近4倍。 通过对比实验可知,改进后的YOLOv2模型在保持较高的精度下模型更小,在CPU中的推理速度更快,具有一定的应用价值。

    Abstract:

    Aiming at the problems that the traditional detection methods of motorcycle helmet detection have low accuracy, poor generalization ability and large number of target detection network parameters, which are difficult to run on embedded devices, an improved MNXt-ECA-D-YOLOv2 target detection algorithm model of YOLOv2 is proposed. First, MobileNeXt network is introduced to replace original YOLOv2 backbone network, and a densely connected network structure is introduced into the sandglass block of MobileNeXt. At the same time, the effective channel attention mechanism is introduced into the network. And, different activation functions are applied at different depth network layers. Finally, DropBlock module is added before the network output convolutional layer. K-means clustering algorithm is adopted to redesign the anchor box size of self-made dataset. The experimental results show that compared with the original YOLOv2 under the same experimental conditions, the proposed method improves the AP50 metric by 3.53% and the model size reduced by 77.44%, and the detection speed increased by nearly 4 times. Comparison experiments demonstrate that the improved YOLOv2 has a higher average accuracy rate, a smaller model, and faster inference speed in CPU. Therefore, the proposed improved YOLOv2 model is valuable in practical applications.

    参考文献
    相似文献
    引证文献
引用本文

冉险生,陈 卓,张 禾.改进YOLOv2算法的道路摩托车头盔检测[J].电子测量技术,2021,44(24):105-115

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码