基于注意力的R-GCN-GRU的在线学生绩效预测
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院, 2.河南省智能装备直驱技术与控制国际联合实验室(河南理工大学), 河南 焦作 454003

作者简介:

通讯作者:

中图分类号:

TP399

基金项目:

国家自然科学基金(61573129)、河南理工大学教改项目(2019JG033)资助


Online Student Performance Prediction of R-GCN-GRU Based on Attention
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University, 2. Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment (Henan Polytechnic university), Jiaozuo, Henan 454003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的绩效预测方法没有区别性地对待各属性特征对学生成绩的重要程度、学生在线学习的低完成率的问题,提出了一种融入注意力机制的关系图卷积神经网络和门控循环单元(AR-GCN-GRU)的学生绩效预测方法。其融入的注意力机制用于捕获学生之间的关系属性特征,同时提取学生重要属性特征并进行可视化,且该方法综合了关系图卷积神经网络(R-GCN)和门控循环单元(GRU)的优点,既能捕捉节点之间的内部关联、又能很好地抽取最具代表性的学生行为属性特征信息。在公开数据集上对模型进行了对比验证和消融实验,模型F值和精确率分别达到了99.00%,99.73%,实验结果表明所提方法较其它算法有明显提升,验证了注意力机制的有效性。

    Abstract:

    Aiming at the problem that the traditional performance prediction method does not treat the importance of each attribute feature to student’s scores and the low completion rate of student’s online learning differently, a convolutional neural network of relational graph and gated recurrent unit integrated into the attention mechanism(AR-GCN-GRU)score prediction method for students is proposed.The integrated attention mechanism is used to capture the relationship attribute characteristics between students, and at the same time, extract the important attribute characteristics of students and visualize them,And the method integrates the advantages of the convolutional neural network of relational graph (R-GCN) and the Gated recurrent Unit (GRU),and can not only capture the internal correlation between nodes,but also extract the representative information of students' behavioral attributes well.The model was contrasted and ablation experiment on a public data set,The F value and accuracy of the model reached 99.00% and 99.73%, The experimental results show that the method has been significantly improved than other algorithms, and the effectiveness of the attention mechanism is verified.

    参考文献
    相似文献
    引证文献
引用本文

崔立志,何泽彬,李璇.基于注意力的R-GCN-GRU的在线学生绩效预测[J].电子测量技术,2021,44(19):69-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-05
  • 出版日期:
文章二维码