具有自动抗噪功能的心电信号分类算法
DOI:
CSTR:
作者:
作者单位:

南京师范大学计算机与电子信息学院/人工智能学院,江苏 南京 210023

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


ECG classification algorithm with automatic anti noise function
Author:
Affiliation:

School of Computer and Electronic Information /School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    心电图(electrocardiogram,ECG)检测是心脏疾病最常用的诊断方法。但是在心电信号采集过程中往往会受到噪声干扰,从而使心电信号分类诊断的正确率受到很大影响。为提高分类诊断的准确率和抗噪能力,改进设计了一种用深度残差收缩网络(deep residual shrinkage network,DRSN)实现自动抗噪、全局平均池化(global average pooling,GAP)整合空间信息的ECG分类诊断模型。在MIT-BIH心律失常数据集上验证了模型的分类性能,并将其与普通的卷积神经网络(convolutional neural network,CNN)模型进行了抗噪性能分析比较。实验结果表明:设计的DRSN+GAP诊断模型基于AAMI标准的分类正确率高达99.3%,对不同强度的工频及高斯两种噪声其抗噪性能均优于普通的CNN模型。

    Abstract:

    Electrocardiogram (ECG) detection is the most commonly used diagnostic method of heart disease. However, in the process of ECG signal acquisition, it is often disturbed by noise, which greatly affects the accuracy of ECG signal classification and diagnosis. In order to improve the accuracy and anti noise ability of classification diagnosis, this paper improves and designs an ECG classification and diagnosis model which use deep residual shrinkage network (DRSN) to resist noise automatically and integrate spatial information by global average pooling (GAP). The classification performance of the model is verified on MIT-BIH arrhythmia data set, and its anti noise performance is analyzed and compared with the ordinary convolutional neural network (CNN) model. The experimental results show that the classification accuracy of the designed DRSN + GAP diagnostic model based on AAMI standard is up to 99.3%, and its anti noise performance is better than ordinary CNN model for power frequency and Gaussian noise with different intensity.

    参考文献
    相似文献
    引证文献
引用本文

雷宇,刘少儒,徐寅林.具有自动抗噪功能的心电信号分类算法[J].电子测量技术,2021,44(21):49-55

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-08
  • 出版日期:
文章二维码