基于机器视觉的内丝接头尺寸测量系统设计
DOI:
CSTR:
作者:
作者单位:

上海工程技术大学机械与汽车工程学院,上海201600

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Design of inner wire joint size measurement system based on machine vision
Author:
Affiliation:

School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实际工业检测中内丝接头的凹槽尺寸人工测量存在效率低,精度低测量不一致等问题,开发了一个基于机器视觉的内丝接头凹槽尺寸测量系统,首先利用形态学定位凹槽位置,然后用双边滤波结合Roberts算子精确寻找凹槽的边缘,最后用最小二乘法将边缘拟合为直线段,利用Halcon图像处理软件计算直线段之间的最小距离,通过C#联合Halcon库创建界面显示测量结果。实验测试结果表明,本系统测量精度为±0.01mm,测量系统的检测准确率为98.73%,漏检率为0,过检率为1.27%;在检测时间上,检测一个工件的平均时间为0.37s。该系统测量精度高、测量稳定、运行速度快,因此可以有效地取代工业检测中的人工测量。

    Abstract:

    Aiming at the problems of low efficiency, low accuracy and inconsistent measurement in the manual measurement of the groove size of the inner wire joint in the actual industrial inspection, a groove size measurement system of the inner wire joint based on machine vision is developed. Firstly, the groove position is located by morphology, and then the edge of the groove is accurately found by bilateral filtering combined with Roberts operator, Finally, the edge is fitted into straight line segments by the least square method, the minimum distance between straight line segments is calculated by Halcon image processing software, and the measurement results are displayed by c# combining Halcon library. The experimental results show that the measurement accuracy of the system is ± 0.01mm, the detection accuracy of the measurement system is 98.73%, the missed detection rate is 0, and the over detection rate is 1.27%; In terms of detection time, the average time for detecting a workpiece is 0.37s. The system has high measurement accuracy, stable measurement and fast operation speed, so it can effectively replace the manual measurement in industrial detection.

    参考文献
    相似文献
    引证文献
引用本文

李晋鑫,沙玲.基于机器视觉的内丝接头尺寸测量系统设计[J].电子测量技术,2021,44(24):98-104

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码