基于改进K-means聚类算法的海外欠发达城市配电网规划
DOI:
CSTR:
作者:
作者单位:

1.三峡大学 电气与新能源学院 宜昌 443002;2.三峡大学 湖北省输电线路工程技术研究中心 宜昌 443002;3.国网重庆市电力公司党校(培训中心)重庆 40005

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:


The distribution network planning of underdeveloped overseas cities based on improved K-means clustering algorithm
Author:
Affiliation:

1.College of Electronic Engineering & New Energy, China Three Gorges University, Yichang 443002, China; 2.Hubei Provincial Engineering Technology Research Center for Power Transmission Line, China Three Gorges University, Yichang 443002,China; 3.State Grid Chongqing Electric Power Company Party School(training center), Chongqing 400050, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统K-means聚类算法难以适应海外欠发达城市配电网规划混乱和负荷点分布不均的问题,提出了一种基于改进K-means聚类算法的海外欠发达城市配电网分区规划技术。首先,考虑容量裕度对分区的影响,引入加权因子改进欧氏距离;其次,根据变电站的分布特点考虑供电单元的选择,并进行聚类中心点到变电站的距离计算;最终,构建出以站间供电单元最多,以及考虑电源分布的总欧式距离最小为目标函数的配电网分区规划模型。以孟加拉首都达卡的Dhanmondi地区配电网改造为实际工程应用算例,结果表明,采用改进K-means聚类算法获得的负荷分区平均差值与传统方法相比减少了34.35%。

    Abstract:

    Aiming at the problem that the traditional K-means clustering algorithm was difficult to adapt to underdeveloped overseas cities because of chaotic planning and unevenly distributed power loads, a method based on improved K-means clustering algorithm for the distribution network planning of underdeveloped overseas cities was proposed. Firstly, the impact of capacity margin on partitions was considered, and the weighting factor was added to improve the Euclidean distance. Secondly, the selection of power supply units were considered by the characteristics of the substations, and the distance between the clustering center point and the substation was calculated. Finally, a distribution network planning model was constructed with the most power supply units between stations and the smallest total Euclidean distance considering power distribution as the objective function. Taking the transformation of the distribution network in the Dhanmondi area of Dhaka, the capital of Bangladesh, as an actual engineering application example, the results shows that the average difference of load partitions obtained by the improved K-means clustering algorithm is reduced by 34.35% compared with the traditional method.

    参考文献
    相似文献
    引证文献
引用本文

姚佳奇,唐波,刘子怡.基于改进K-means聚类算法的海外欠发达城市配电网规划[J].电子测量技术,2021,44(23):54-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知