基于深度学习的旋转目标检测方法研究进展
DOI:
CSTR:
作者:
作者单位:

河北科技大学 信息科学与工程学院 石家庄 050018

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

河北省自然科学基金(F2019208305)资助


Research progress of rotating target detection methods based on deep learning
Author:
Affiliation:

School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在遥感和场景文本图像中,目标具有方向多样性和尺度变化较大等特点,使得常见目标检测方法在这两场景中检测效果不佳,针对此问题,诞生了许多专门设计的检测方法。将朝向角度信息融入候选区域生成网络或设计专门的方向角度预测网络,是目前有朝向目标检测研究的主流方法,其对遥感和场景文本图像检测具有重要意义。本文综述了旋转目标检测在遥感和场景文本两场景中的研究现状,根据有无锚框将当前基于深度学习的旋转目标检测方法分为基于锚框的一阶段方法、基于锚框的二阶段方法和无锚框方法三类方法进行归纳分析,并从优缺点、骨干网络和适用场景等方面进行了对比。最后,对旋转目标检测方法的发展前景和研究方向进行了展望。

    Abstract:

    In remote sensing and scene text images, the target has the characteristics of directional diversity and large scale change, which makes the common target detection methods have poor detection effect in these two scenes. Aiming at this problem, many specially designed detection methods have been born. Integrating the orientation angle information into the candidate area generation network or designing a special orientation angle prediction network is the mainstream method of orientation target detection, which is of great significance to remote sensing and scene text image detection. This paper summarizes the research status of rotating target detection in remote sensing and scene text. According to whether there is an anchor box or not, the current rotation detection methods based on deep learning are divided into three types: one-stage method based on anchor, two-stage method based on anchor and anchor free method, and compared from the aspects of advantages and disadvantages, backbone network and applicable scene. Finally, the development prospect and research direction of rotating target detection methods are prospected.

    参考文献
    相似文献
    引证文献
引用本文

安胜彪,娄慧儒,陈书旺,白 宇.基于深度学习的旋转目标检测方法研究进展[J].电子测量技术,2021,44(21):168-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-08
  • 出版日期:
文章二维码