基于广义S变换与迁移学习的轴承故障信号的识别算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学, 南京 210044; 2.无锡学院 无锡 214105

作者简介:

通讯作者:

中图分类号:

TP306+.3

基金项目:

国家自然科学基金项目( 61372128),教育部协同育人项目(202002179030),南京信息工程大学滨江学院科研与教研项目(2020yng001,JGZDI201902)资助


Bearing fault signal recognition algorithm based on generalized S transform and transfer learning
Author:
Affiliation:

1.Nanjing University Of information Science & Technology,Nanjing,210044,china;2.Wuxi University,Wuxi,214105,china

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滚动轴承是高科技机械设备的重要零部件,也是重要故障源之一。目前,轴承故障样本稀少,数据分布不均匀,传统轴承故障识别方法效果不稳定等给故障识别技术带来了巨大困难。将深度学习相关技术与轴承故障诊断技术相融合,利用深度学习模型识别图像的优势,提出一种广义S变换方法。广义S变换是小波变换和短时傅里叶变换的继承和发展,通过其将一维轴承故障信号数据转换成二维时频图,对Xception网络进行模型的微调和超参数的优化,再将处理后的二维时频图输入改进后的Xception网络开展迁移学习。基于凯斯西储大学公开的滚动轴承数据进行了上述实验,针对不同工况的故障信号识别率达到99.95%,实验结果证明基于广义S变换与迁移学习的识别方法真实、有效。

    Abstract:

    Rolling bearing is an important part of high-tech mechanical equipment and also one of the important fault sources. At present, few bearing fault samples, uneven data distribution and unstable effect of traditional bearing fault identification methods bring great difficulties to fault identification technology. A generalized S-transform method was proposed by combining deep learning correlation technology with bearing fault diagnosis technology, and taking advantage of deep learning model to recognize two-dimensional images. Generalized S-transform is the inheritance and development of wavelet transform and short-time Fourier transform. By transforming one-dimensional bearing fault signal data into two-dimensional time-frequency diagram, the model of Xception network is fine-tuned and the hyperparameters are optimized, and then the two-dimensional time-frequency diagram is input into the improved Xception network to carry out transfer learning. The above experiments were carried out based on rolling bearing data published by Case Western Reserve University, and the recognition rate of fault signals under diff ____________________________________________________________________________________________ *基金项目:国家自然科学基金项目( 61372128),教育部协同育人项目(202002179030),南京信息工程大学滨江学院科研与教研项目(2020yng001,JGZDI201902) erent working conditions reached 99.95%. The experimental results prove that the recognition method based on generalized S-transform and transfer learning is real and effective.

    参考文献
    相似文献
    引证文献
引用本文

徐文校,张银胜,杨山山,于心远,徐永杰.基于广义S变换与迁移学习的轴承故障信号的识别算法[J].电子测量技术,2021,44(24):161-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码