基于类别空间约束的弱监督卷积神经网络特征学习算法
DOI:
CSTR:
作者:
作者单位:

天津职业大学电子信息工程学院 天津 300410

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

全国高等院校计算机基础教育研究会计算机基础教育教学研究项目(2019-AFCEC-073)资助


Weak supervised convolutional neural network feature learning algorithm based on class space constraint
Author:
Affiliation:

School of electronic information engineering, Tianjin Vocational University, Tianjin 300410

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统卷积神经网络虽然具有较好的应用准确度,但是其的主要缺陷是效率低,为解决这一问题,弱监督算法被提出,现有的弱监督学习算法标记训练样本较少,效率较理想,但是仍然存在误分类率较高等不足。为了同时满足高效率和高精度的要求,本研究结合了弱监督算法和卷积神经网络,提出一种基于类别空间约束的弱监督卷积神经网络特征学习算法。首先,建立弱监督卷积神经网络特征学习算法的网络模型;其次,通过对空间加以约束,使标记样本和未标记样本建立一定的联系,从而实现特征空间聚类;最后,利用模型训练样本数据,实现基于类别空间约束的弱监督卷积神经网络特征学习算法的设计。实验结果表明,所提方法误分类率达到5%,分类耗时不超过0.4 ms,能够更好地开展特征学习。

    Abstract:

    Although the traditional convolutional neural network has good application accuracy, its main defect is low efficiency. In order to solve this problem, the weak supervised learning algorithm is proposed. The existing weak supervised learning algorithm has less labeled training samples and ideal efficiency, but there is still a lack of high misclassification rate. In order to meet the requirements of high efficiency and high precision at the same time, this study combines weak supervision algorithm and convolutional neural network, a weak supervised convolutional neural network feature learning algorithm based on class space constraints is proposed. Firstly, the network model of the feature learning algorithm of weakly supervised convolutional neural network was established; secondly, by constraining the space, the labeled samples and unlabeled samples were connected to realize the feature space clustering; finally, the training sample data was used to realize the design of weak supervised convolutional neural network feature learning algorithm based on class space constraint. The results show that the proposed method has a misclassification rate of 5% and a classification time is no more than 0.4ms, which can better carry out feature learning.

    参考文献
    相似文献
    引证文献
引用本文

高博.基于类别空间约束的弱监督卷积神经网络特征学习算法[J].电子测量技术,2022,45(5):94-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-30
  • 出版日期:
文章二维码