输送带损伤多尺度特征交叉融合检测方法
DOI:
CSTR:
作者:
作者单位:

1.太原理工大学 新型传感器与智能控制教育部重点实验室 太原 030024; 2.太原理工大学 物理与光电工程学院 太原 030024;3. 荷兰代尔夫特理工大学 机械海事和材料工程学院 代尔夫特 2628

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

NSFC-山西煤基低碳联合基金(U1810121)、2020年中央引导地方科技发展基金项目(YDZX2020140001796)资助


Multi scale feature cross fusion detection method for conveyor belt damage
Author:
Affiliation:

1. Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;2. College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;3. Section of Transport Engineering and Logistic, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, 2628 CD Delft, the Netherlands

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于图像或声音的单信号输送带纵向撕裂的检测方法往往受光线和噪声影响较大,为了克服这种局限性,提出了一种多尺度特征交叉融合检测方法。本文首先利用Log-Mel特征提取算法将一维声音信号转化为二维谱图;然后搭建双输入神经网络对图像与声谱图同时进行特征提取以及多尺度特征交叉融合;最后根据融合后特征通过损失函数判定损伤分类。经实验该方法的检测准确率、划痕和纵向撕裂的灵敏度分别可以达到97.37%、96.53%和98.67%,分别比现有的视听决策级融合检测方法提高了7.04%、6.96%和6.4%。因此,该方法能够更好地满足输送带损伤检测的可靠性要求。

    Abstract:

    The detection method of longitudinal tear of single signal conveyor belt based on image or sound is often affected by light and noise. In order to overcome this limitation, a damage detection method based on multi scale feature cross fusion is proposed. Firstly, Log-Mel feature extraction algorithm is used to upgrade one-dimensional sound signal to two-dimensional spectrum; Secondly, a dual input neural network is built to extract the features of the image and the sound spectrogram at the same time, and they are cross fused at different scales; Finally, according to the fused features, the damage classification is determined by the loss function. Through experiments, the detection accuracy, sensitivity of scratch and longitudinal tear of this method can reach 97.37%, 96.53% and 98.67% respectively, which is 7.04%, 6.96% and 6.4% higher than the existing audio-visual decision level fusion method. Therefore, this method can better meet the reliability requirements of conveyor belt damage detection.

    参考文献
    相似文献
    引证文献
引用本文

屈鼎然,乔铁柱,庞宇松.输送带损伤多尺度特征交叉融合检测方法[J].电子测量技术,2021,44(24):169-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码