基于ACT-Apriori算法的电网故障诊断方法研究
DOI:
CSTR:
作者:
作者单位:

三峡大学 电气与新能源学院,湖北 443002

作者简介:

通讯作者:

中图分类号:

TM73

基金项目:

国家自然科学基金面上项目(61876097)、湖北省科技计划项目技术创新项重大项目(2016AAA040)资助


Power network fault diagnosis based on ACT-Apriori algorithm
Author:
Affiliation:

China Three Gorges University, College of Electrical Engineering and New Energy, Yichang, 443002

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电网拓扑结构愈加复杂,故障后难以快速从海量数据中挖掘有效故障信息且具有较高的计算复杂度;当故障数据不完整或不确定时,无法得到正确的诊断结果。针对此问题,将Apriori算法与自编码算法结合改进,形成改进的自编码关联规则挖掘算法(ACT-Apriori)并引入电网故障诊断之中。以保护和断路器动作数据作为条件属性,故障线路为决策属性,建立故障初始决策表;然后利用ACT-Apriori算法进行核属性提取并利用动态阈值交互式挖掘技术确定最佳阈值;最后形成最简故障决策表,实现故障信息的诊断推理。文中采用四母线配电系统作为仿真对象,与传统的Apriori算法和FP-growth算法及目前最新的FP-Network算法进行对比分析,算例结果表明:改进的算法相较于传统关联规则算法,运行时间分别缩减了90.69%和83.55%,内存占用分别缩减了21.43%和15.38%,相较于FP-Network算法,在时间复杂度和空间复杂度上均有一定程度优化;且本文算法对故障数据不完备情况下的单重、双重、稀有故障诊断的容错性较高,准确率达到95.24%,可以有效实现故障的快速诊断。

    Abstract:

    In view of the increasingly complex topology structure of power grid, it is difficult to quickly mine effective fault information from massive data after a fault and has high computational complexity, and the fault data is incomplete and uncertain, leading to the failure to get correct diagnosis results. To solve this problem, this paper introduces the self-coding association rule mining algorithm (ACT-Apriori) into power grid fault diagnosis. The initial fault decision table was established by taking the protection and circuit breaker action data as the condition attribute and the fault line as the decision attribute. Then a self-coding association rule mining algorithm is used to extract kernel attributes and the optimal threshold is determined by dynamic threshold interactive mining technology. Finally, the simplest fault decision table is formed, and the fault information of each case is diagnosed and reasoned. In this paper, the four-bus distribution system is used as the simulation object, and compared with the traditional Apriori algorithm, FP-growth algorithm and the latest FP-Network algorithm, the calculation results show that: Compared with the traditional association rule algorithm, the running time of the improved algorithm is reduced by 90.69% and 83.55%, and the memory footprint is reduced by 21.43% and 15.38%, respectively. Compared with the FP-Network algorithm, the time complexity and space complexity are optimized to a certain extent. In addition, the proposed algorithm has high fault tolerance for single, double and rare faults with incomplete fault data, and the accuracy is 95.24%, which can effectively achieve rapid fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

程江洲,闫冉阳,冯梦婷,冯馨以.基于ACT-Apriori算法的电网故障诊断方法研究[J].电子测量技术,2021,44(24):32-39

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码