基于集成学习的高炉压差预报模型研究
DOI:
CSTR:
作者:
作者单位:

1. 唐山学院 人工智能学院 唐山 063000;2.华北理工大学 冶金与能源学院 唐山 063009

作者简介:

通讯作者:

中图分类号:

TF325.61

基金项目:

河北省教育厅科学技术研究资助项目(BJ2021099);河北省自然科学基金高端钢铁冶金联合基金项目(E2019209314, E2020209208)资助


Research on Blast Furnace Pressure Difference Prediction Model with Integrated Learning
Author:
Affiliation:

1. College of Artificial Intelligence, Tangshan College, Tangshan, China, 063000. 2. College of Metallurgy and Energy, North China University of Science and Technlogy, Tangshan, China, 063009

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提升高炉生产的智能化水平,提出了基于集成学习算法的高炉下部压差预报模型,解决了基于在线数据精准预报下部压差的难题。通过对高炉内部机理进行系统分析,全面选取了高炉原料参数、操作参数、状态参数和指标参数作为模型的输入。并采用实际现场数据得到了变量间的相关系数,确定了高炉下部压差相关的重要特征变量。采用极限树集成算法建立了压差预报模型,并结合模型的预报精度,采用向前选择法优化了模型的输入。通过对模型算法超参数的选择,获得了最优超参数集合,该参数集合建立的下部压差预报模型精度R2达到了0.8264,且MSE接近零值。测试结果证明,该模型具有良好的预报精度和泛化能力,对现场操作者提前预判高炉运行状况和调整炉况具有重要的指导意义。

    Abstract:

    In order to improve the intelligent level of blast furnace production, a prediction model of pressure difference in low part of blast furnace with integrated learning algorithm is proposed, which solves the problem of accurately predicting the lower pressure difference based on online data. Through systematic analysis of the internal mechanism of the blast furnace, the raw material parameters, operating parameters, state parameters and index parameters of the blast furnace are comprehensively selected as the input of the model. The actual field data is used to obtain the correlation coefficient between the variables, and the important characteristic variables related to the pressure difference in the lower part of the blast furnace are determined. The extra tree ensemble algorithm is used to establish the pressure difference prediction model, and combined with the prediction accuracy of the model, the forward selection method is used to optimize the input of the model. By selecting the hyperparameters of the model algorithm, the optimal hyperparameter set is obtained. The accuracy R2 of the lower pressure difference prediction model established by the parameter set reaches 0.8264, and the MSE is close to zero. The test results prove that the model has good prediction accuracy and generalization ability, and has important guiding significance for the on-site operators to predict the operating conditions of the blast furnace and adjust the furnace conditions in advance.

    参考文献
    相似文献
    引证文献
引用本文

刘颂,赵亚迪,张振,刘小杰,刘然,吕庆.基于集成学习的高炉压差预报模型研究[J].电子测量技术,2022,45(2):31-38

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-17
  • 出版日期:
文章二维码