生成对抗网络扩充样本用于高光谱图像分类
DOI:
CSTR:
作者:
作者单位:

1.青岛科技大学 自动化与电子工程学院,山东 青岛 266061;2.中国海洋大学,信息科学与工程学院,山东 青岛266101

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

国家自然科学基金资助项目(61971253)


Adversarial network samples were generated for hyperspectral image classification
Author:
Affiliation:

1.College of Automation & Electric Engineering, Qingdao University of Science & Technology, Qingdao 266061,China;2. College of Information Science & Engineering, Ocean University of China, 266101, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高光谱图像包含着丰富的地理位置信息和光谱信息,高光谱图像分类是遥感领域的一个基础而又重要的研究方向。然而,高光谱图像样本数量不足仍然是限制分类精度进一步提升的主要问题。生成对抗网络中生成器和判别器的不断地对抗学习,最终理想状态为,生成器生成的伪样本判别器无法判别,生成与真实样本非常相似的伪数据样本。文章通过生成对抗网络来依据原有的少量样本,生成新的伪样本,解决样本获取困难、样本数量不足的问题。实验在两个高光谱图像数据集上分别选取200个和400个样本点进行实验,在生成对抗网络中生成新的伪样本,进行分类训练。与SVM、3DCNN等分类方法在同样是样本不足的情况下比较下,分类整体的平均精度得到明显定提升,实验证明文中分类方法的分类表现优于相比的其他分类方法。

    Abstract:

    Hyperspectral image contains rich geographical location information and spectral information. Hyperspectral image classification is a basic and important research direction in the field of remote sensing. However, the insufficient number of hyperspectral image samples is still the main problem that restricts the further improvement of classification accuracy.In generative adversarial network, generator and discriminator are constantly learning against each other. In the final ideal state, the pseudo sample discriminator generated by generator cannot be discriminated and pseudo data samples very similar to real samples are generated. This paper uses generative adversarial network to generate new pseudo-samples based on a small number of original samples, so as to solve the problems of sample acquisition difficulty and insufficient sample quantity. In the experiment, 200 and 400 sample points were selected from two hyperspectral image data sets, and new pseudo-samples were generated in the generative adversarial network for classification training. Compared with SVM, 3DCNN and other classification methods with insufficient samples, the average accuracy of the whole classification has been significantly improved. Experimental results show that the classification performance of the proposed method is better than that of other classification methods.

    参考文献
    相似文献
    引证文献
引用本文

刘雪峰,刘佳明,付民.生成对抗网络扩充样本用于高光谱图像分类[J].电子测量技术,2022,45(3):146-152

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-14
  • 出版日期:
文章二维码