基于DKPCA的电力信息系统虚假数据注入攻击检测方法
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院,昆明 650500;2. 云南省高校物联网技术及应用重点实验室,昆明650500;3. 云南电网有限责任公司电力科学研究院,昆明 650217

作者简介:

通讯作者:

中图分类号:

TM773

基金项目:

国家自然科学基金(61763049);云南省应用基础研究重点课题(2018FA032);云南省中青年学术和技术带头人后备人才项目(202105AC160094)资助


False data injection attack detection method based on dynamic kernel principal component analysis for power information system
Author:
Affiliation:

1. School of Information, Yunnan University, Kunming, 650500, China; 2.Internet of Things Technology and Application Key Laboratory of Universities in Yunnan, Kunming, 650500, China; 3. Electric Power Research Institute, Yunnan Power Grid Cop. Kunming, 650217, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力信息系统的虚假数据注入攻击(FDIA)通过恶意篡改对应物理系统的状态数据,影响电网的正常运行。本文提出一种基于动态核主元分析(DKPCA)的虚假数据注入攻击检测方法,目的是解决电力信息系统中FDIA事件的时间相关性(动态性)问题,以及非线性变量难以分离问题。该方法通过构建动态增广矩阵解决了变量间的动态自相关性,利用核矩阵将非线性变量映射到高维空间转化为线性变量,引入主元分析建立DKPCA模型求得统计量的控制限,实时检测数据判断是否有故障发生。通过在IEEE-30节点系统上进行实验仿真,与KPCA、PCA、NPE、TNPE等检测方法比较,结果显示DKPCA模型检测率高达100%,同时保持较低的误报率0.2%。证明了所提方法可以实时检测电力信息系统中的攻击数据,有效避免故障漏报,确保电力信息系统数据安全。

    Abstract:

    False data injection attack (FDIA) in power information system affects the normal operation of power grid by maliciously tampering with the state data of corresponding physical system. This paper proposes a false data injection attack detection method based on dynamic kernel principal component analysis (DKPCA), in order to solve the time correlation of FDIA events in power information system (dynamic) problem, and the problem that it is difficult to separate nonlinear variables. This method solves the dynamic autocorrelation between variables by constructing a dynamic augmented matrix, uses the kernel matrix to map nonlinear variables into high-dimensional space and convert them into linear variables, introduces principal component analysis to establish DKPCA model, obtains the control limit of statistics, and judges whether there is a fault by detecting data in real time. The experimental simulation is carried out on TEEE-30 node system. Compared with KPCA, PCA, NPE, TNPE and other detection methods, the results show that the detection rate of DKPCA model is as high as 100%, while maintaining a low false positive rate of 0.2%. It is proved that the proposed method can detect the attack data in power information system in real time, effectively avoid fault omission and ensure the data security of power information system.

    参考文献
    相似文献
    引证文献
引用本文

陆孝锋,李鹏,高莲,杨家全.基于DKPCA的电力信息系统虚假数据注入攻击检测方法[J].电子测量技术,2022,45(2):91-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-17
  • 出版日期:
文章二维码